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INTRODUCTION

An algebraic function ¥ of a complex variable  is a function which satisfies
an equation of the form F(z, ) = 0, where F' is a polynomial with eomplex
coefficients; i.e.,  is a root of an algebraie equation whose coefficients are rational
funetions of z. This very definition exhibits a strong similarity between the
notions of algebraic function and algebraic number, the rational functions of =
playing a role similar to that played by the rational numbers. On the other hand,
the equation Fi{z, ¥) = 0 may be construed to represent a curve in a plane in
which  and y are the coordinates, and this establishes an intimate link bétween
the theory of algebraic functions of one variable and algebraic geontebry.

Whoever wants to give an exposition of the theory of a.lgebralc functlons of one
variable is more or less bound to lay more emphasis either on the algebraico-
arithmetic aspect of this branch of mathematics or on its gedmetric aspect. Both
points of view are acceptable and have been in fact held by various mathe-
maticians. The algebraic attitude was first distinggly>asserted in the paper
Theorie der algebraischen Funklionen einer Vemndgv:g en, by R. Dedekind and
H. Weber (Journ. fiir Math., 92, 1882, pp. 1815290), and inspires the book
Theorie der olgebratschen Funktwnen etner Vma:betn by Hensel and Landsberg
(Leipzig, 1902}, The geometric approach wag followed by Max Noether, Clebsch,
Gordan, and, after them, by the geometers ‘of the Ttalian school (cf. in particular
the book Lezione di Geometria algebrica, by F. Severi, Padova, 1908). Whichever
method 1s adopted, the main results\to be established are of course essentially the
same; but this common materisd‘is' made to reflect a different light when treated
by diﬁerently minded mathentaticians. Familiar as we are with the idea that
the pair “obscrved factrs0bserver” is probably a more real being than the
inert fact or theorem by ﬁiself we shall not negleet the diversity of these various
angles under whwh a}heory may be photographed. Such a neglect should be
particularly avoi in the case of the theory of algebraic functions, as either
mode of appruatﬂn seems liable to provoke strong emotional reactions in mathe-
matical ml.mfls ranging from devout enthusiasm to unconditional rejection.
HoweveT {his does not mean that the ideal should consist in 2 mixture or synthe-
sis of the two attitudes in the writing of any one bock: the only result of trying to
obtain two interesting photographs of the same object on the same plate is a
blurred and dull image. Thus, without attacking in any way the validity per se of
the geometric approach, we have not tried to hide our partiality to the algebraic
attitude, which has been ours in writing this book.

The main difference between the present treatment of the theory and the one
to be found in Dedekind-Weber or in Hensel-Landsberg lies in the fact that the
constants of the fields of algebraie funetions to be considered are not necessarily
the complex numbers, buf the. elements of a completely arbitrary field. There
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vi INTRODUCTION

are several reasons which make such a generalization necessary, Firsi, the
analogy between algebraic functions and algebraic numbers becomes even closer
if one considers algebraic functions over finite fields of constants. In that cise,
on the one hand class field theory has been extended to the case of ficlls of
functions, and, on the other hand, the transcendental theory (zeta function,
L-series) may also be generalized {¢f. the paper of F. K. Schmidt, dnalytische
Zahlentheorie in Korpern der Charakteristik p, Math. Zeits., 33, 1931). Moreover,
A. Weil has succeeded in proving the Riemann hypothesis for fields of algebraic
functions over finite fields, thereby throwing an entirely new light on the classical,
i.e., number theoretic, case {cf. the book of A. Weil, Sur les courbes algébrigues et
les variéiés qui s'en déduisent, Paris, Hermann, 1948 this baok contains an
exposition of the theory from a geometrie point of view, although this point of
view is rather different from that of the Italian geometers), Beeondly, if S iy an
algebraic surface, and B the field of rational functions ori 8, then B is & field of
algebraic functions of one variable over K{x), where K-i5'the basic field and z a
non constant elernent of R. E,. Picard, among other§)has very successfully used
the method of investigation of S which amounts to studying the relationship
- between K and various fields of the form K{z){cf. E. Picard and G, Simart,
Théorte des fonctions algébrigues de deux vqriabfés tndependantes, Paris, Gauthier-
Villars, 1897). Now, even when X is thefield of complex numbers, K{x) is not
algebraically closed, which makes it ‘n&cessary to have a theory of fields of
algebraic functions of one variable gyer fields which are not algebraically closed.

The theory of algebraic functigns'of one variable over non algebraically elosed
fields of arbitrary characteristic’ has been first developed by H. Hasse, who
defined for these fields thenoion of a differential (H. Hasse, Theorie der Differ-
entiale in algebraischen,ﬁunktiomnkdrpem mit volkommenen Konstantenkérper,
Journ. fiir Math., 1 2,'1934, pp. 55-64), and by F. K. Schmidt, who proved the
Riemann-Roch theotem (F. K. Schmidt, Zur arithmetischen, Theorie der alge-
braischen Funklionen, 1, Math, Zeits., 41, 1936, p. 415}. In this book, we have

which were given by A. Weil (A, Weil, Zur algebraischen Theorie der algebraischen.
Funktz'é{(en; Journ. fiir Math., 179, 1938, pp. 129-133).
Ag:;ior contents, we have included only the elementary part of the theory,
nga@ng out the more advanced parts such as class field theory or the theory of
Borrespondences. However, we have heen guided by the desire of furnishing a
Suitable base of knowledge for the stud
This is why we have placed i
algebraic functions of one
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INTRODUCTION vii

reason for this restriction is that it is not yet clear what the “good” definition of
the notion should bhe in the general case: should one demand only that the
residues be all zero, or should one insist that the differential may be approximated
as closely as one wants at any given place by exact differentials (or a suitable
generalization of these)? Here is a net of problems which, it seems, would deserve
some original research. The last chapter of the book is concerned with the theory
of fields of algebraic functions of one variable over the field of complex numbers
and their Riemann surfaces. The scissor and glue method of approach to the
idea of & Riemann surface has been replaced by a more abstract definition,
inspired by the one given by H. Weyl in his book on Riemann surfaces, which
does not necessitate the artificial selecting of a particular generation of the field
by means of an independant variable and 2 function of this variable, We*have
also avoided the cumbersome decomposition of the Riemann surface into
triangles, this by making use of the singular homology theory, ag-developed by
8. Eilenberg. A7

I have been greatly helped in the writing of this book by freq}lefit eonversations
with E. Artin and O. Goldman; I wish to thank both of them sincerely for their
valuable contribution in the form of advice and suggespions.
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NOTATIONS FREQUENTLY USED

Coon g5 conorm from B to S (IV, 7).

Cosp gsa: cotrace from R to § (for repartitions, IV, 7; for differentials, VI, 2 and VI, 6}.

d(n): degree of a divisor a (I, 7).

b(x): divisor of an element = (I, 8).

blw): divisor of a differential « (IL, 8).

3(a): dimension of the space of differentials which are multiple of a divisor a (11, 5).

?: boundary (VII, 3).

H,(X, ¥): n-dimensicnal homelogy group of X modulo ¥ (VII, 3}, 2\

(v, v'): intersection numbers of the 1-chains and v (VIL, 6).

Flw, wy: (VII, 8). ’:\“\’

K{---}: field obtained by adjunction te the field K of the element or ele:g’:eﬁts or set of
elements whose symbols are between the sign { and the sign }; spéei'al meaning for
fields of algebraic functions of one variable defined in V, 4. N

1(a) : dimension of $he space of elsments which are multiples of gédivisor a (1L, 1).

#p: order function at a place p (for elements, I, 5 and 11T, 1;4&:‘fepartitions, IT, 4; for
differentials, IT, ). v

Ngxg: Norm from 8 to B (IV, 7). \\J
NﬁfR: (w! 5)‘ <\
" :p-component of a differential w (IT, 7). N

1es po: residie of a differential » 2% a place p (IIT, :5;)‘

Spgx: Trace from S to B (for tepartitions, v, ’?:;,‘fo_r differentials, VI, 2).
Spetr: (IV, 5). '.:.3.; v

t v |: set of points of a chain 4 (VII, 3} o8
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CHAPTER 1
PLACES AND DIVISORS

§1. FIELDS OF ALGEBRAIC FUNCTIONS OF ONE VARIABLE

Let K be a field. By a field of algebraic functions of one variable over K we
mean a field R containing K as a subfield and which satisfies the following
condition: R contains an element z which is transeendental over K, and R is
algebraic of finite degree over K{(z). N\

The element. 2 is of course not uniquely determined. If 2’ is any element of B
which is transcendental over K, then R is algebraic of finite degre€ over K{(z").
In fact, the degree of transcendency of R over K being one, R is‘algebraic over
K{z". In particular, » is algebraic over K{(z), and K(z, '} is of finite degree over
K{z"). Since R is of finite degree over K{z), it is @ fortiori uffinite degree over
K({z, '), which proves that it is of finite degree over K"

Those clements of B which are algebraic over K_are' called constants. They
form a certain subficld K’ of R, the field of wnstan)fé:ﬁ‘he field B is also a field of
algebraic functions of one variable over X'. In fac?t}, any element x of & which is
transcendental over K is also transcendental oter K, and R, which is algebraic of
finite degree over K(2), is also algebraic of finite degree over K'(z).

1t is important to keep in mind that, .W}mh diseussing properties of a field & of
algebraic functions of one variable, we shal] congider in fact not properties of the
field R alone but properties of thefair formed by K and B. For instance, let Z be
any field, and set B = Z(z, g,;z}\, where z and y are algebraically independent
over Z and z is algebraic ovenZ{z, v). Set Ky = Z(z), K> = Z{y). Then R is a
field of algebraic functiong'ef one variable over either one of the fields K; or Ko ;
but its properties as g field of algebraic functions of one variable over K; may be
quite different fromvits-properties as a field of algebraic funetions of one variable
over K . ®)

However, “ﬁﬁ%"considering a field R of algebraic functions of one variable
over a field K} the field of constants of R will appear more and more to be the
essenti,al\(ib}ect- instead of K itself, which will gradually fade into the background.

§2. PLACES

Let R be a field and X a subfield of B. By a V-ring in B (over K) is meant a
subring o of B which satisfies the following eonditions:

1. o contains K;

2. p is not identical with R; :

3. If x is an element of R not in o, then ¢ 'isin o.
Let o be a V-ring. Those elements in o which are not units in o (we call them
“pon-units”) form an ideal p in o. In fact, if z is a non-unit and z € o, then £z

i



9 PLACER AND DIVISORS

is a non-unit, because, if 2 had an inverse % in o, 2% would be in o and inverse
of z. Now, let z and y be non-units in o, If eitherz or y is 0,z — y is clearly a
non-unit. If z and y are both = 0, one at least of the pair of inverse elements » )
and y/zisino. If 2/y ¢ », then z — ¥ = y(x/y — 1) is a non-unit; if y/& €0, then
T~y = 2(l — y/z) is a non-unit. Thus the non-units of o form an idesl p. Any
ideal in o containing p but >« P contains a unit and therefore coineides with 0,

Now, let R be a field of algebraic functions of one variable over a field K,
By a place in R we mean a subset p of R which is the ideal of non-units of some
V-ring o of B (aver K). This V-ring is uniquely determined when p is given. In
fact, it is the set of all z ¢ B such that zp C p (we mean by zp the set of products
of z by elements of p). To show this, we observe first that any™z e o has the
required property; on the other hand, if z ¢0, then z™" is in gand is not & unit,
whence +™" ¢ p and 1 e zp, zp & 9. The ring o is ealled thering of the place p.
The elements of o are said to be infegral at the place AN

Since every element of o not in p is a unit in o, we &ee, iImmediately that the
residue ring o/p is a feld, This field is called the restdige field of the place p.

The ring o s inlegrally closed in R, Le., every életnent z of B which satisfies
an equation of the form + > rias™ = & with @, -+, q, in 0, itself
belongs to o. For, were this not the case, ,th‘&l’ " would belong to p, and we
would have 1 = —37n @iz ™) e p, whigh\is impossible. It follows in particular
that the ring of any place containg the\ield of constants K’ of B. This shows
that the notion of place in B is tlge.’sarhe whether we consider R as & field of
algebraic functions over K or ovenk”. On the other hand, we have K’ ) p= {0},
which proves that the natural hd};ilbmorphjsm of 0 ontto the residue field Z=10/p
of p maps K7 isomorphically upon & subfield of . We shall allow ourselves,
whenever convenient, to.gpeak of = as of an overfield of K'; this amounts to
not distinguishing be%@n’the elements of K” and their residye classes modulo p.

§3. Praces or tuy Frerp K{z)
Let us consider-the special cage where B = K(z), with, of course, z tran-

by f.8ihce f is irreducible, it cannot divide a
drwdmg ore of them. Thys the formulag

fn_ @ _ gk — gy B9 gigs
by ks hiby ! By he hukn

show that o, is g subring of R. It is clear that this
'lffis not in o, because, if we write 1/f = g/h,
Iz, b = gf s divisible by f; this shows that p,

.Of B not in o, , We may write « in the form g/h
n x without common factor. Since 1 ¢0r, Fdi
divide g, whenge ut

subring containg K Moreover,
where ¢ and » are polynomisls
# B. Now, let 4 be any element
» Where ¢ and % are polynomials
p _ ) vides %, and therefore f does not
= hi/geo,. Thus 9 ®a V-ring; we shall denote by p, the
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corresponding place. It is clear that p; consists of all elements of the form fa/h,
where ¢ and A are polynomials in z, and % is not divisible by f.

Thus, to every irreducible polynomial f in x with coefficients in K we have
associated a place p; of K(x), If f and f arc essentially distinet lrreduclble poly-
nomials (i.e., f'/f not in K}, the places ps and pyr are distinet beeause f belongs
to o but not to o5 .

Now, observe that, if weset 2’ = 2™, we have K{(z’} = K(z). It follows that to
every irreducible polynomial In 2’ with coefficients in K, there is associated a
place of K{z). This applies in particular to the irreducible polynomial #'; we
shall denote by Py, the place defined by 2’ and by oy, the ring of this place.
The place py. is distinet from all the places p; defined above, because, if f is
any irreducible polynomial in z, we have z ¢ o, , while z clearly does not belong
to Difz .

Now we assert that 1;he places y; (for all irreducible polynomials Jid 0y with
coefficients in K) and py/, exhaust all the places of B. Let p be any, place in R,
and let o be its ring. Assume first that z ¢ 0. Since o is a ring and containg K,
it follows that o contains the entire ring K[x]. Since p is obmously a prime ideal
in o, p N K[z] is a prime ideal in K[z]. Thus p N K]x] eitherds the zero ideal or is
formed of all multiples of some irreducible polynomial f.Thé first case is impos-
sible because every element = 0 of K[z] would then bexéumt in 9, from which it
follows immediately that every element of B “ould\belong to 0. Thus p N KJz]
consists of the multiples of some irredueible £, T g and A are in K] [#], and A i 1s not
divisible by f, then % is not in p and is therefore a unit in o, whence gh "¢ p,
which proves that o contaius oy . Let u be.an' element of R not in 0; ; then we
may write w = g/h, where g and % are mK [z], have no eommon f&ctor, and % is
divisible by f. If u were in o, the same Would be true of A = ¢ u; but this is
impossible because #; being I, JS\not a unit in 5, We have therefore proved
that, if = e 0, then p is one of ¢ e\places ps. If « is not in o, then 2’ = z *is, and
we see that p M Kla’] consists of all elements of K[x'] which are d1v151ble {in
K[z’]) by some irreducible \po}ynomlal F{=") in 2* with coefficients in K. Since z’
is not a unit in o, it is 32 P 1) K[2] and is therefore divisible by (") in Kz’].
Thus we may assume- that f = z’; p is then the place by .

It is clear that \f\f is an 1r1‘edu01ble polynomial in 2 with coefficients in K,
then p, is the pmn{:lpal ideal generated in o; by f: By = fo,. Similarly, py, is
(1/x)04pz . S N

Let p beany place of B = K{z}. Denote by o the ring of p and by £ a generator
of p (ie., p = i0). Then no element £ 0 of b can belong to 2”0 for every n > 0.
In fact, assume first that o = o, for some irreducible polynomial f in z. Let
u = g/h be an element of o which belongs to "o for every n (g and & arein
K][z], and & is not divisible by f). Since p = & = fo, we see easily that £*s = f™o.
We have by assumption, for each #; an equality of the form g/h = f"g./k, with
gn and ks, in K[z] and k., not divisible by f. Thus gh. = f"g.h; since f is irreducible
and does not divide A, , it follows easily that f* divides g. This being true for every
n, we have ¢ = (), whenee u = (. A similar argument applies if ¢ = 0y, .



4 - PLACES AND DIVISORS

Now, abandon for a moment the assumption that R is of the form K(z).
Assuming only that B is a field of algebraic functions of one variable over X,
let p be a place of B which satisfies the following condition:

The ring v of p contains an element ¢ such that p = fo and N5y t"0 = {0).
{We shall see later that every place of R satisfies this condition.) If z e R, there
exists at least one integer n (which may be negative) such that z et". In fact,
if z e, we may take n = 0. If not, then ™" is in 0 and is = 0; therefore there
exists an m > 0 such that 27" € t™o, 2" ¢ ¢ "0, which means that £ "z is in o
but not in fo = b;ie, ™ s aunitin o, and z = ¢ ") is in 0.
If z £ 0, there is by assumption a largest integer n such that z e {"p; denote by
vy(2) this integer. If & and y are elements = 0 in o, then

Q"
{1} n(@) + %) = wizy) O\
and, ff x + y £ 0, O
2 ' »( 4 ¥} = min {5,(x), Va(y.)f-\;

7

In fact, zy clearly belongs to 7>+ whencew, (zy) = »,(2) + », (¥). In
particular, 0 = »,(1) 2 »,(x) + »,(z™), ie., vlaN) £ —»,(x). Now, if we write
z = *“u, ubelongs too but not to fo = , Lepwisa unitino and 278 = ¢
whence »,(z™) = —y,(x), and t-herefore.‘g(:c_l) = —u(x). We conclude that
n(y) = nlayz™) 2 wlzy) — &), and) pomparing with the inequality obtained
above, »{(zy) = »,(z). + »,{y). On the.other hand, if x = min {»,(z), v, (1)), we
have z ¢ 0, y ¢ "0, whence « 4 y'e#p and therefore iz 4+ y) 2

To complete the definition of.the function v, (which has not been defined for 0),
we make the convention to write »,(0) = « » Where = is a symbol with which we
compute according to thelfollowing rules: = > » for every integer n; © = «;
® +n = « for every integer n: w 4+ w = <, Taking these conventions into
account, the formulzﬁl) and (2) are valid in every case.

It should be ohserved that the equality »,(z + ¢) = min {»,(z), v(¥)} holds
whenever v, () »,{y). In fact, assume that »,(z) < (). We have »,(z) =
%@+ y =9 2 min {5z + ), »{—y)}; but it is easily seen that n(—y) =
v,(hl)ggw;(y) = #(y); thus it is impossible that wiz + y) > 5.

Mp;e enerally, we see easily by induetion on m that, if 2, -+ -, z,, are any
elglqen'ts of R, then
P . 1";.(3:'1‘}' T +xm) Z min {V\!(zl): e ,P,(xm)}
an‘d that the equality prevails if there is only one index ¢ such that wiz) =
min {y, (), -, v(z..)}.

The definition of the function #, involves the choice of an element ¢ such that
b = to; but actually the function »y depends only on the place p. In fact, assume
that ¢ is any element of b such that p = 0. Then t = #4, With e ax’xd since
r ¢ to, w e 0. Tt follows immediately that " C "3 and £ C 1M f:)r ev’ery n
which proves our assertion. The function », is called the order function at thé
place p; if x ¢ R, n(z) is called the order of & at p. The knowledge of the order

S




PLACES OF THE FIELD K{z) 5

funetion at a place y determines this place completely, because the ring o of the
place consists of all elements = for which »,(z) = 0. The elements of b are the
elements whose orders are >0, and the units of o are the elements of order 0.
The elements ¢ for which p = #p are the clements of order 1; they are also called
uniformizing variables at p.

Now, let us return to the ease where R is of the form K{(z), with the supple-
mentary assumption that K is the field of complex numbers. If a ¢ K, 2 — a is an
irreducible polynomial and every irreducible polynomial in z with coefficients
in K is of the form Mz ~ a), Ae K, A 0. Denote by p, the place which cor-
responds to the irreducible polynomial ¥ — @. The polynomisls 4 in x which are
divisible by x — @ are those for which A(¢) = (. Thus the elements of the ring
vs of o are the rational fractions which do not admit a as a pole, while the
elements of p, are the rational fractions which admit @ as a zero. Furthermore,
if »; is the order function at y, , any rational fraction « < 0 may be written in
the form (z — a)’**'y, where v admits @ neither as a zero nor as a.pole It follows
that, if »,(u) > 0, then » admits a as a zero of order v.(u), whrle, if wa(n) <0, u
admits ¢ as a pole of order —»,(x). AN

Generalizing this terminology, we set up the iollowmg definitions (where B
is a field of algebraic functions of one variable over a.field K):

Let pbe a place of B. If an element x ¢ & belongs to p, then we say that p
is a zero of z; if 2 " e D, then we say that p is a)gele of «. Furthermore, if there
exists an order function », at p, and »,(z) > \0,"then we say that p is a zero of
order v,(x) of z, while, if »,(z) < 0, we say! “that p is a pole of order —v,(x) of:t:

Cousider in particular the case where = K{z) and p = Py, . Let g = apz” +
a4+ -« + a,bea polynomzal olNdegree 7 in z with coefficients in K. If
@’ = 7, we can write K

g = x_”@ F ooz’ A+ -+ e,
Now,a + ez’ + -+ 4 a,n;c”‘ belongs to the rmg o of p and is not in p because
ao # 0. It follows that a’pbOl¥momial of degree n in z admits Py a8 a pole of order

.1fu = g/heR (where g and h are polynomials in z), the order of u at ;J is
(k‘arly the d.liferem'\af)etween the degrees of & and g.

Still assumingthnt B = K{x), let { be any irreducible polynomial in z with
coeflicients m\K we propose to investigate the residue field Z of the place 1, ,
i.e., the €ing™s,/p;. Set g = p; N Klx]; then those residue elasses modulo by
whlch are represented by elements of K{x] form a subring 2, of Z which is clearly
isomorphic with K[z]/q. But g is the set of multiples of f in K[z]; it follows that
Kl[z]/q is a field which can be obtained from K by adjunction of an element ¢
which satisfies the equation f({) = 0. Now, every element u of oy can be written
in the form g/h, with g and k in K[z} and h not in g, Let g, #, and 4 be the residue
classes of g, hand u respectively; then § = 4k, A = 0, whence @ =gk . But g
and % are in 3; which is a field; therefore % ¢ I, and ¥ = =, . Thus, the residue
field = of p; ean be obtained from K by adjunction of an element ¢ such that
S() = 0. In particular, we sce that 2 ¢s algebrate over K, of finite degree equal
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to the degree of the polynomial f. In the case where f = x, we have 2 = A ;‘t.lzis
shows that the field of constants of K{x), which contains K and is contained
in X, must be K itself. Replacing the consideration of x by that of 1 /T, we see
that the residue field of yy, is K. .

If K is algebraically closed, every irreducible polynomial in & with coeflicients
in X is of degree 1, and therefore the residue field of any place coincides with A
Let then p, be the place which corresponds to z — a, and let « be an element of
K{(z) which does not have a as a pole. Write u = g/h, with g and & in K[«] and
hi{a} # 0. We have

_ g@ha) — Ma)gla)
B R(a)h(z) ©

and g(z)h(a) — k{z)g{a) is divisible by z — q. Thus, the, vélue u(a) taken by u
at @ is also the residue class of % modulo Pq - o\ 3

More generally, fet R he a field of algebraic funetions of one variable over an
arbitrary field K, and let p be a place of R. Let<be an element of B for which p
is not a pole. Then the residue class of modulo p (which is an element of 1he
residue field of p) will be called the value toiih by x at p. It should be observed
that, if X is not algebraically closed, th&value taken by z at p is not in general
an element of K. The value taken by.;: at ) is denoted by z(p); it is clear that, i
neither  nor y has pasa pole, thend@&¥ ) (n) = z(p) + y(p), @) () = z(p)y(p).
The elements which admit D 282 ‘zero are those which take the value 0 at p.

It Is often convenient to saythat an element of B which has 1 as a pole takes
the value = af p; » is heré'a symbol which has no intrinsic connection with the

symbol o which was Used to complete the definition of the order function
at a place. L\

N\

% — ula)

\ -
> e $4. EXISTENCE OF PLACES

A\ X
We shall prove in this section a theorem which mmplies that any field of alge-
braie funetiehs of one variable admits infinitely many places.

Tﬂppﬁ\mm L. Let B be a field of algebraic functions of one variable over a field K.
As;srqm’e that we are given q subring o of R containing K and an ideql P in o not

(ooviaining 1 but {0}, Then there exists a place B of R whose ring © contains o
ond which is such that p P No.

_ If o’ is any subring of B containing o, we shall denote by po’ the ideal generated
n o by the elements of p. We denote by &F the family of all subrings o’ of R
containing o which are such that po’ £ p;

_ ; in particular, o itself belongs to 7.
We s'hall prove t_hat ¥ contains at least one maximal element; (ie., there is a
ring in ¥ which is not properly contained in any other ring of the family ),

s in s, that if F isa non empty subfamily of F
rings m ¥, one contains the other, then o contains a ring
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which contains all rings of the family ', T'o do this, denote by n, the set-theoretic
unien of all rings of IF'. If & and y are in n; , then z € o', i e 0/, where o’ and »’*
are in If; one of the rings o’, o’/ contains the other. If for instance o’ contains 9",
then z and ¥ are both in o', whenee ¥ — y ¢ 0, zy ¢ o', which shows that z — y
and ay are in o; . The same conclusion subsists if o* C o”'; therefore, o, is a ring.
Sinee every ring belonging to F contains o, 0, contains 0. We assert that do, 52 o; .
In fact, were this not the ease, then we could represent 1 in the form 1 =
Ty + o+ s, With 26 b, yien (I = 4 £ A). Fach y; would belong to
some ring n“) ¢ F'. For each pair (i, ), one of the rmgs n(" 0 would contain
the other; since there are only a finite number of rings o', it follows easily that
they “ould all be contained in one of them, say in »*. But then we would*have
1 = X hizyiepo™, whence po® = 0®, which is impossible sineg 0*® e F'.
Thus we have po, # 01, whence o, e F/, which proves that F is mductﬁre

Let £ be a maximal ring in F; we shaﬂ prove that £ is a V- rmg First we
show that any element in £ which is =1 (mod $£) has an inyerge in . Let @
be the set of these clements; it ig clear that products of elements in ¢ are in .

Let £ be the set of elements of the form xg ", with & ¢ ;4 Q then the formulas

2 xz g —q¢z RN
- == — —-— A__
g q q¢’ A\
show that £ is a ring. Since 1e@, £ contd 4108 0. We assert that 1¢p9.

In fact, assume for a moment that

Z}L s yf zigdh  yieD, e (A Z{Zh.
Bet g = ++- q» ; then ge @, yyh?nce g=1+4 Dz, with ziep, yie,
and we have X\ . - :

ht
3 ([ o~ 2 o3,

which is J.mposs:ble Th\tﬂs £ belongs to F; since © is maximal, we have O’ = D
whence, if g¢ @, ¢ %s ©. Now, let v be any element of R not in >D then O]u] = O,
whence O[] ¢F° and pO[u] = Dfu]. It follows that we may represent 1 in the
form 1 = Q=ish za’, with € pO (1 =4 = n). Since 1 — 2¢Q, We may also
write 1 &€ %,-1 xid with z; = & {1 — 200" € . We may furthermore assume
that, amorlg all representations of 1 in this form, we have sclected the one with the
lowest n; ie., it is impossible to represent 1 in the form 1 = 37, 27u* with
W < n,zi epO (1 £ ¢ = »'). Now, assume for a moment that w ' ¢ D, ‘Fhen
we see in the same way that we can represent 1 in the form E?=1 gl "t with
yiepD (1 £ ¢ £ m); furthermore, we assume that, among all representations
of 1 in this seeond form, we have selected the one with the smallest possible m.
If n = m, we may write 4" = 2 yiu"", whence

Exau -+ xn (E Yiu _i)s
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" COROLLARY 1. Let R be g Jeeld of algebraic functs,

follows from Corollary 1.
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which is impossible in virtue of our choice of x. Exchanging the roles played by u
and ¥, we see in the same way that the assumption that n < m likewise leads to
an-impossibility. Thus the assumption that 4! ¢ leads to a contradiction,
and we have 4™ ¢ . Since pO = D, we have O = R ; therefore D is a V-ring.

Let B be the ideal of non-units of ©. Then  is a place of B; since O = D,
an element of p cannot be a unit in £, whence p C B N 0. Theorem 1 is thereby
proved.

REMARK 1. Neither the definition of & V-ring in R nor the proof of Theorem 1

makes any use of the fact that & is a field of algebraie functions of one variable.

It follows that our proof of Theorem 1 yields a result which is valid for any
pair of fields (K, R) such that X is a subfield of R. Q

RemARK 2. When R is » field of algebraic functions of one, variable over K,
and when p is & prime ideal in 0, it can be proved that the jutérsection B N o is

necessarily equal to j; however, we shall not have to umeke use of this more
refined result, N

S

15.0f one variable over a field K,

andletx , -+ |z, be elements of B which are not\gil¥n, K. Let o be the set of polyno-
mials F(Xy , - | X.,) inr letiers with coefficientsdn K such that F(x, st T = 0,
Let &, -+ | & be elements of K such that FE, 8 =0forall Fea Then

there exists o place of R which is a comingnizero of x, — & R

Bet 0 = Ky« z.]; an ele;;pénfy of o can be represented in the form
P@y, -+, z,) where Pis g polynomiel in coefficients in K, and,if P(xy, - -, 2,) =
P'(wy, -+, 1), then P* — P jin a. It follows that P(t, -+, &) has the same

value for all polynomials Psuch that Y =P, -, x) Let p be the set of
elements y in g for which this value is 0. Then p is clearly an ideal in o; itis #o

beeause'it has only Qi ‘common with . T¢ P is 2 place of R such that p < 7,
then ‘Blsaeammqn‘z roof 2 — g, ... » X — &y

COROLLARY?.}Lét R be a field of algebraic functions of one variable over g Sield K,
and let z, y be2lements of B, not both constants. Let F be an trreducible polynomial

with cqg%{éﬁts m K such that Fla,y) = 0. I g, n are elenients of K such that
F(g, ").‘% s then there exists o place of R which isq common zeroof x —~ L and y — 4.

Ae}sui:ne for instance that is not constant; then y ig algebraic over K{x).

Tiet Y.j’ + m@ ¥t o oL + 2-(z) be a polynomial in ¥ with coefficients in
Kz}, irreducible in K{&)[¥], which admits Y as a zero. We may write p,(z) =
Pi.(:c) /Q:(x), where P, and Q: are polynomials with coefficients in K relatively
prime to each other, Let ) be a least tommon multiple of ¢, y e, Q,,’; then it is
well known that Fu(X, ¥) = gxyyr 4 2 QX)/QUXNPX) Y™ is
irreducible in K[X » Y]. Let F he any polynomial in K[X » Y1such that (x,y) =
!} ; then. F’(m, Y) is divisible hy Fiz, ¥) in K(@)[Y); from this and fro;n the
rreducibility of 7, i follows that & ig divisible by F, . In particular, we have
F = aF, e e K, whence Fi, 9) = 0 and F'(¢,9) = 0. Corollary 2,theref01'e
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CoroLLARY 3. Let R be o field of algebraic functions of one varioble over a field K,
and let x be a non constant element of B. Then = admits af least one zero and one
pole in K.

The existence of a zero follows immediately from Corollary 2 (take F = X,
y = 0). Since ¢~ is not constant, it has at least one zero, and x has at least
one pole, .

CoROLLARY 4. A field of algebraic functions of one variable admits infinitely
many places. '

Let B be the field in question, and let K be the field of constants in RB. Letb
z be a non constant element of K; then K[x] is the ring of polynomials i’ with
coefficients in K. This ring contains infinitely many essentially différent irre- -
ducible polynomials. In fact, if X is infinite, we may take the~polynomials
x — a, ae K;if K is finite, it is well known that, for every intgg(;;\h > {}, there
is an irreducible polynomial of degree . If f is any irreducible\element of K[x],
the ideal generated by f in K[z] is not the unit ideal. Thexféfore, it follows from
Theorem 1 that there exists a place b, of B which is a\zero of f and whose ring
contains K[z]. If f and g are essentially distinct irreducible polynomials in z,
they are relatively prime to each other, and there &Xist elements « and » of Kfz]
such that uf + g = 1; it follows immediately>that p, = b, .

§5. Tu® ORDER FUNCTION. THN DEGREE OF A FLACE

Let p be a place of a field K of a,lgebljéi’.ié‘functions of one variable over g field
K. We propose to prove that p satisfiésthe condition stated in §3, which guaran-
tees the existence of an order funetion; we shall also prove that the residue field =
of p is algebraic of finite degree‘over K. N

Let x be an element # Oyof . Assume that we have a finite sequence (%, -- -,
t.41) of elements of the ring.8 of p which satisfy the following conditions: { = z;
if1 £1=e ty/tiy isdh'®; £y = 1. Let also (wy, -+, ua) be a finite sequence
of elements of o whose residue classes @, - - , @ modulo p are linearly inde-
pendent over K.\Wé’ propose to prove that the ed elements tau; 2 = i £ e + 1,
125 d)of R are linearly independent over the field K{z). Assume for a
moment that there is a linear relation of the form )

4 \ v e+l d
' E ’Z{ pii{x)tiu; = O
with p.;(z) € K{z), the pi;’s being not all zero. Multiplying this relation by a
commen denominator of all rational fractions p;;(z), we obtain a relation of the
same form where the p;;'s are polynomials. Dividing if necessary this relation
by some power of x, we obtain a relation
el d
(1) ; ; Ful@)tiu; = 0

where the f;;(x) are polynomials which are not all divisible by 2. Set /:/(0) = a4 ;
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then fi(x) ~ @i;.= 2g:5(x) e 26 {where g.; is & polynomial)..Let & be the index
2 2 which is determined by the following conditions: there exl‘sts an ! ‘( I1=l= . d)
_such that e % 0, but, if & < ¢ £ e+ 1, then a; = 0forl £ j £ d. The equality
{1) gives '

E¥d
E Eagt.-u,-=mw

b =1

withw = —3 375 34 g::()w; e 0. We write this in the form

4 . bl "
E%‘uﬁ SW—- — Z Eaﬁ-—'uf-
o =1 b = b N
Since k = 2, 2/t belongs to p; if © < K, t:/% belongs to p. It follows that the
Tight side of our last formula, represents an element of p, When'ee‘E‘}.l Aty = Q.
“ But this is impossible since ay ¢ 0 and @, -+, 4 are(linearly independent
over K. Thus our assertion that the elements tu; 2 $AEe+ 1,155 5d)
- are linearly independent over K{(z) is proved. K7,
Since ¢ p, z is not constant (cf. §2); the field/RNs therefore finite algebraic
over K{z). Set n = [R: K{(z)]; then we see thatdé < n.
Taking firste = 1,4 = 2,4, = 1, we conclude’'that d < n. Therefore T cannot

contain more than » elements linearly indepetident over K. This proves that T is
algebraic of finite degree over X. \%

Next, taking d = Lw =1, we s‘ee. tﬁat the number of terms in a sequence

(b, +++, tuq) which satisfies thé “eonditions specified above is bounded by
# + 1. Among all sequences, which satisfy these conditions, take one, say
(), -+, topr) with the largest possible number of terms, and set £ = 1, . Lot 2

be any element of p; we s}l’g’ﬂ prove that z e to. Were this not the case, z/t would
not be in o, and the efore ¢/z would be 3 non-unit in o, i.e. #/z would be in n,
But then (b, -~ ;r,\k/z, fon) would be a sequence of e + 2 terms satisfying
our requirements, which is impossible. Thig proves that p = b iz a principal
ideal. Let y beatf-element = of 9;if ye ™, set 4, = Yuin=y(1l£i =
m — 1), “inf's= 1. Then we have UifUspep (1 £ ¢ < m); therefore, it follows
from whs{j’ve have proved above that m = [R: R{). This proves that no
elemqn@éé 0 can belong to ™ for every m. Thus we have now proved

€

m'it&inbkmi 2. Let v be a place of a field of algebraic functions of one variable over a

fiekd K. Then there exists an order function af b, and the residue field of p ¢s algebraic
- of finile degree over K. ' .

COROLLARY. Let R be g Jield of algebraic Junctions of one varighie over a field K.

Then the field of constants of B is of finite degree over K .

This follows immediately from the fact that th
n the residue field of any place of R.

We see also that the residue field of a place pis of finite degree over the field of

constants. This degree is called the degree of the place p.

e field of constants is tontained
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Remark. Throughout this book, we shall use (without defining it ahew) the
notation », to represent the order function at a place p.

§6. THE THEOREM OF INDEPENDENCE

Consider the field B of rational funetions of a complex variable with complex
coefficients. If & is any complex number, there exists one and only one place bq
at which z takes the value a. If 4 ¢ R, we may represent  in a neighbourhood of @
by its Laurent series

-]

u =, ale — a),
=y
the ¢x’s being complex numbers. If ¢. # 0, then (x — &) "« has no zero ‘sl ho]e
at P, , from which it follows that the order of » at ps is r. Now, if wé\require
more information on the behavior of 4 in the neighbourhood of g, we\may give
the values of a certain number of the coefficients €. appearing @Q"t}i'e beginning
of our series, say of those for which r < k& < m, where m isfaﬁ integer >r.
If we set v = Z'ﬂ;l ex(z «— a)*, the réquirement that u should have the given
coefficients ¢, , - - - , €m_1 May be expressed by the conditionthat »,, (u — ¢) = m.
We shall then say that u behaves as v up to the ordgr# — 1 at p, . Now, we
consider the following problem. Let there be give;(a ite number of distinet
complex numbers @, -+, @ and, for each e, a’certain rational function »;
and an integer m; ; does there exist a rational function « which satisfies simul-
taneously the h conditions »{u — v;) = m where », is the order function at pa, ?
In other words, is there any necessary rélation between the modes of behavior
of a rational function ak several distinet places (behavior meaning of course
behavior up to a eertain order)? We{shall provein the general case of an arbitrary
ficld of algebraie functions of q{{‘variable that there i no such necessary rclation.

More precisely, we shall proye

Turorem 3. Let R bé<a field of algebraic functions of one variable, and let
Dy, -, Py be b distingbplaces of R. Assign to each p; some clement v; of B and
some integer my; . ThHen there extsls an element u of K which satigfies the h conditions
vilu — ;) = med(b < 5 < h) (where v; represents the order funciton at ;).

We prgcee:(i' by induction on k. There is nothing to prove if 2 = 1. Assume
that % £ 1)and that Theorem 3 holds for systems of A — 1 places. Then, given
h — 1 integers ey, -+ , €1, there always exists an element u of R such that
yi(u) = e; 1 £ 1 £ b — 1). For, there cxist elements »; such that »i{v:) = e;
(1 € i = h— 1), and there exists an element # such that »;(u — 2;) = e; 4 1.
Sinee u = (u — v;) + v;, we then have vi(u) = »ivs) = e; (cf. §3).

We shall prove that it is impossible that there should exist rational numbers
prs ---, pra such that wlz) = Zf;i pwi(2) for every z.# 0. Assume for a
moment that such numbers exist, and consider first the case where at least one
of them is <. There exist elements z and 2’ of B such that

vi(2) = 1, vy =0 20,
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3"'(2) = 0, P“(Z’) =1 if P < 0.

Then, clearly, w(z) Z 0, %(z") < 0. On the other hand, since vz} # »:(z'),
we have »;(z + #) = min {{2),»(&)} =0l St S h - 1), whence vi(z + 2') =
0; this is however impossible, since »{z') < #(2), whenee »y(z + 2') = wm{z') < 0.
Assumie now that the numbers p,; are all 20. They can obviously not all be 0;
agsume that o > 0.If g2, -~ - , paa are all = 0, then the conditions va(2) > 0 amd
7(z) > 0 are equivalent to each other, whence p» = 1, which is not the case,
If one at least of pp, - -- , pu_y is # 0, then we write our equality in the form
nle) = priea(z) — 2oims pr pivi(z), and we are brought back to the case studied
before. Qur assertion is thereby proved. A~

Tt follows that there does not exist any system of A rational numbers pg, -+, o
not all zero such that Y_i_; pwi(z) = 0 for all z 0. From thigiye can conclude
that there exist k elements 2, , - -+ , z of B, all 3 0, such thab det (v:(2;))s.; # 0.
To show this, we shall construct these elements step by step. For 2 we take
any element 7 0 such that »(21) #£ 0. Then the set of fational linear combinations
of the functions »,, -+, »» which vanish at 2 igof ﬂimension h — 1 over the
field @ of rational numbers. Assume that we havealready determined z,, - - - , 2
(where ¥ < h) in such & way that no mqre\\than h — k linearly independent
rational linear combinations of » , - -+ spwvanish simultaneously at z; , - - , 2 .
We take one of these, which is = 0, sﬁy’23_1 pive, and we determine z,4; # 0
in such a way that s p#s(2rs1) 7.0: Then no more than & — (k + 1) linearly
independent rational linear combinations of »,, -+« , vy vanishat zy, +-- , zep: -
At the end of our constructionyave have h elements 0, z;, -+ - , 2, of R, such
that no non trivial rationaldinear combination of », , +++ , », vanishesat z, , - -
2 . The numbers »;(z;) being rational, it follows that det (v:(2:)).; = 0.

The equations z\’:'ék&j,kpﬁ(z:’) = —lfori =k D jmoewlz;) = +1 for
¢ # k (where k ig"any index from 1 to &) have a solution (14, -+ -, o4} Int
rational numbefs; Let & be a positive integer such that the numbers do.
(1 =42 k1S k £ A) are all integral. If we set ¢, = [J4 2777, we have
() = &8 v{e) = +dford =k Set ty = (1 4 )™ If i = &, we have
vs(f;l)\“%\o = »:(1), whenee »,(1 + {T') = »i({7") = —d, and vi(l) = d. On the
ot]?{;p';hand, f—1=—&"(1+ ) and n({%) = d, whence nlty — 1) = d.

NNow, we ?bserve that the number d may be selected as large as we please. We
choose it in such a way that d + »i(p;) 2 max {my, --- ,m} (1 £ 1,7 S h)
and we set y = Ll_t,:u;. Then % — v; = (& — Lw; + Ek;ﬂ tive ; We have
pi(ts — Do) = d + »(w) Z me,and, it k = 4, wi(lwe) = d + vive) = m,

from which it follows that »:(u — ;) 2 m; (1 £ ¢ < h). Theorem 3 is thereby
proved. :

T

In the course of the proof of the above theorem, we have established the
following

COROLLme. Let b, - "+, b be h distinet places of a field R of algebraic functions
of one vartable. Assign to each p; some inleger m; . Then there exists an, element u
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of R which satisfies the b conditions vi(w) = m; (1 £ i £ k) (where v; is the order
funclion at p.). '

§7. Drvisozs

Lot R bea field of algebraic functions of one variable over a field K. If we
assign to every place p of B an integer e(p) in such a way that e(p) #= O for
only a finite number of places b, we obtain what is called a divisor in R; this
divisor is denoted symbolically by J],p**. The integer e(p) is called the exponent
with which p enters in the divisor; if this exponent is 0, we also say that p does
not enter (or occur) in the divisor.

Divisors are multiplied with each other according to the formal rule

(Hn Pem) (Hw pg’m) = prc(»)-w (p)_ - '.\:\

Tt is clear that they form an abelian group. The unit element pt‘\:this’group is
Hh ", which is ealled the unit divisor. &N

If p is a place, we shall identify y with the divisor which, agsigns 1 to p and 0

to every. other place. Thus, if p:, -+, b, are places andNer , - -, e, integers,
f1 ... p% represents a divisor; if p, -+, pr are distingh,y; enters in this divisor
with the exponent ¢; . Ky N

A divisor J], 9°* is called ¢ntegral if all expopents e(p) are 0. Products of
integral divisors are clearly integral. If o and(by&re divisors, we say that b is a
multiple of a, or that n divides b, 1f o isan ntegral divisor. It is clear that,
if o divides b and b divides ¢, then a divides c. - o

Ha=]L P and b = I1, v'® sare divisors, there always exist divisors
which divide both a and b, and theyare all the divisors which divide ¢ = I, pe®
where g(p) = min {e(), f(p)}ﬂi\)r this reason, ¢ is called the highest common
divisor of a and b, The highest gommon divisor of two integral divisors is Integral.
Similarly, the divisors whith are multiples of a and of b are all the multiples of
m = [, 1%, where ff@y = max {e(p), f(p)}. The divisor m is called the least
common multiple of mand b. It is easily seen that the least common multiple of
o and 57 is thediverse of the highest common divisor of o and b,

Denote by dk(%"the degree of a place p. If a = T, 2% is any divisor, the
number En)d(p) (this sum has a meaning since only a finite number of
exponent; :e%'p) are 5 0) is called the degree of a and is denoted by dfa) (we see
immediftely that, if @ = p is a place, then the degree of a as & divisor is equal to
the degree of the place p). If a and b are divisors, we have

dlab) = d(a) + d(b); 'a’.(a_l)_ = —d(n).

T-he degree of an integral divisor is =0; therefore, if a divisor a divides a

divisor b, we have d{a) = d(b).
Leta = [], p*® he a divisor, and let z, ¥ be elements of K. Then we say

that z is congruent fo y modulo o, and we write
z=g (moda)
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if the condition »,(¢ — ) = e(p) is satisfied for every place p. Let 2, y, 2, ' be
elements of E and let A, ' be elsments of the field of constants K’ of I2; then it is

" clear that the congruences ¢ = y (mod a) and & = 3’ (mod-a) imply e + N’ =
M + V¢ (mod o). In particular, the elements of B which are =0 modulo a
form a veetor space D over K’, and the condition for z and y to be congruent to
each other modulo a is equivalent to the condition that x and y should be in the
same coset modulo . :

Ifa=pf - pooft -« ofr is a divisor (where py, -+, P, G, v+, Qq a2
distinct places and ¢; > 0, <+, e > 0, i < 0, -+, fu < 0), the condition
for an element x of B to be = 0 (mod a) can be analyzed in the following way:
should have ¥; as a zero of order = e; (1 £ { & m); 2 should not\have any pole
outside the set {a1, -+, 4a}, and, if it has a pole at q;, thelopder of this pole
should be = —f;. We see that this implies infinitely m@ihy conditions on =,
one for each place. “\

It will be convenient to introduce a new type of ?Emgruence which involves
only conditions bearing on the behavior of the~element under consideration
_ at a finite number of places. Let § be any finite\set of places. Let z and » be

elements of R and let ¢ = [T, ' be a divisor. Then we shall write

T =g yﬂ{in\od a)

when the conditions »,(x — y) = e()), are satisfied for all places p e S. It is clear
that the elements 2 which are %,g 0 (mod a) form a vector space aover K'; we
shall denote this space by £(0,38). The condition z = ¥ {mod a) is equivalent
toxr — y e Rig, 8). ~N

LemMa 1. Leto = H@:F("’ and b = I], o™ be divisors such that b is multiple
of a, and let S be q findte set of places. Then R(b, S} is contained in £ (s, S), and
the vector space £(0,58)/8(b, S) (over the field of constants) is of finite dimension
oqual to Do XFB) — e(9))d(p).

_ The in(;h{ﬁibﬂ R, S) < R(u, 8) is obvious. Set a5 = [, 1™, where &'(p)
s e(p)\.@en p €S and O otherwise, and define similarly bs. Then R(b, S) =

R(b:g A8), (e, 8) = R(as, 8) and by is & multiple of 5 . On the other hand we

'h’ﬁt‘f‘?' ves (F(p) — e(0))d(») = d(bs) — d(as). Now, weean find a finite sequence
W', B u) of divisors which satisfy the following conditions: ¢y = as;
Tl =4S h,aisof the form g, ;p, where » is a place belonging to S;a, = bs.
We have £(s, 5) = £(00, 8) D R, §) D --- D R(a,, 5) = K(6s, S,
If we can prove ?hat'each R(ar, 8)/R:, 8) is of finite dimension equal to
dla;) — d(a;;_l), it will follow that R(ag, 8)/R(bs , 8) is of finite dimension
equal' to 24 (d{n) — d(8: 1)) = d{8s) — d(as). Thus we see that it will be
sufficient to prove Lemma 1 in the case where b = by = ash = ap, with pe S
Let py, -+, b, be the distinet places belonging to 3, with, say, p, - D Making'
use of the Corollary to Theorem 3, $6, we defermine an ele:.men,t Ue R s;uch that

%) = e(p) (1 £ = n). Let d be the degree of p; . We wish to prove that

R(n, 8)/R(Y, S} is of dimension d over the field of constants K* of R. The residue

7
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field of p has a base {@1, -+, @} with respect to K’ which is composed of d
elements. Let wy be an element of the ring of p which belongs to the residue
class @x modulo b (1 £ & = d). By Theorem 3, §6, we can find elementscw, , « -+, wg
of B such that v (e, — wp) Z 1, vple) = 02 £ 4 2 n). Tt is clear that w still
belongs to the residue class @; . Any element of the residue field of y can be
expressed in the form ZL; Mae e K, 1 £ k = d); therefore, every element 2
of the ring of » may be expressed in the form z = D it M+ 2, with A € K7
(lhk=diand 2 ep.

The elements ey (1 £ k < d) belong to &(a, 8). If w is any element of &(x, S},
then »,(w/u)} = 0 and w/u can be expressed in the form 36 s + 2, with
Zep, MeK I 1> 1, we have v, (w/1) Z 0, »,{wz) Z 0 whence vy (21X 2 0;
if i = 1, the fact that 2’ e p implies that »,,('v) = e(p) + 1. It follews that .
21 belongs to (8, S) and therefore that every element of £(u, 8)i8\congruent
modulo £(b, S} to some linear combination of wws , « - - , uwg With coefficients in
K’. This proves already that £(a, S)/R(b, 8) is of finite dimension = 4. To prove
that this dimension. is €, it is sufficient to show that, M , & A being elements
not all zero of K', w = ey Maeste cannot lie in £(b, S} Now, the residue elass
of w/u modulo pis 3 e Mains 5 0, whence v, (w/u) = Opand v, (w) = »(u) = e(p),
which proves our assertion since f(p) = e(p) + 1'.'\Le}nma 1 is thereby proved.

§8. Tue DpIVisor OF A(FWNCTION

Let X be the field of complex numberg;%ind let u = f{z)/g{z) be a rational
function = 0 of a complex variable z, f énd g being polynomials with coefficients
in K with no common factor. Set B =~K{z); if ¢ ¢ K, denote by p. the place of &
at which  takes the value a, and dénote by 5, the unique pole of z {p,, is therefore
the same place which was denoted by py» in §3). The numbers & for which p,
is a zero of u are the roots of theequation fx) = 0.Letar, - -+ , axbe the distinet
roots of this equation, and assume that a; is a root of multiplicity ¢; (1 = ¢ £ A);
Ps; i then a zero of ortder e; of w. On the other hand, f{z) = o:H?-a x — a)’,
@ ¢ K, which proved/that the sum S, e is equal to the degree & of f(z).
Similarly, the pis Bers @' for which y,r is a pole of u are the’ roots of the
equation g(z)=0;if ., ays are these roots, and e1, - - -, e their multi-
plicities, the&:’s’u;:n Z?;l €} is equal to the degree &' of g(x). As for the place p,,,
we have seen that the order of u at this place is & — 8. Now, we have

h hr
§ —+ 26— 2 ei=0

Fe=l F=1
which can be expressed in the form
Zv (u) = 0

11 places p of the field K{z). Thus the sum of the

the sum being extended over a _
= ) with complex coefficients at all places of

orders of a rational funciion
K{x) is 0.

We shall try to generalize this resulé. Let us first consider the ease where K
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Oetpy, -+, p, be distinet z
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is the field of real numbers and B = K(z), x transcendental over K. Consider

the polynomial u = 2° 4 px 4- ¢, where p and ¢ are real numbers. The only
pole of «is Py, , and it is & pole of order 2. As for the zeros of %, we must dis-
tingiish several cases.

a) If p* — 49 > 0, then u = (z — =) (& — ), where z; and z, are distinet,
real numbers; this means that « has two zeros both of order 1, viz. the places
9 and p, which correspond to the irreducible polynomials ¢ — z; and ¢ —
(cf. §3).

b) If p* — 4g = 0, then u = (z — 2,)°, with 2, = —p/2. This means that «
admits a single zero of order 2, which is the place ps which corfesponds to the
irreducible polynomial z — 3. N

e) If p* — 4¢ < 0, then u is irreducible, and admits the{'éfo}’e a single zero of
order 1, which is the place y; which corresponds to the irreducible polynomial .

Thus the statement that the sum of the orders of(itat all places is 0 iz still
true in cases ) and b), but is false in case e). Howéver, we make the following
observation. In the case where K was the field 5f eomplex numbers, every place
was of course of degree 1. In the present casé)'the places p, and p. in case a)

. and the place p; In case b) are of degree‘}) while the place p, in case ¢) is of

degree 2 (beeause w is of degree 2; ¢f/§3). Thus we see that, in all cases con-
sidered thus far, it is true that Z;vé(ujd(p) = 0; in other terms if we set a =
1T, v, then ais a divisor of degreé 0. It is this last statement which we shall
prove to be true in the most geheral case.

Let then from now on R lje’;a, field of algebraic functions of one variable over
an arbitrary field, and let\¢ be 2 non zero element of B. In order for the sum

» A0, (x) to havq g'baeaning, it is necessary that only a finite number of the
numbers »,(x) be W; which means that z has only a finite number of zeros
and peles. We shall prove that this is actually the case.

- Lemms 12R8R be a field of algebraic functions of one variable, and let z be a

non consignbélement of B. Then 2 has only a finite number of zeros; if sty

are th&@sﬁmt zeros of ¢, we have D5 d(p)ny,(2) = [B : K. where K is the
ﬁelfi'.pMSMnts of R. » @),

Let b eros of x (not necessarily all of them). Set b =
'H,v..; p:*, where b; = »,,{z), and denote by ¢ the unit divisor. Let S be the set com-

posed of s, -+, . Then, according to Lemma, I, §7, the space R, S)/R (b, S)
18 of finite dimension & equal to v d(i)ve,(x). Let z:, - - - , 2, be & elements of
.E?(e, 8) whose residue classes modulo £(b, 8) are linearly independent over K.
Then we shall prove that z s ', 7 themgselves are linearly independent over
K(z). Assume for a moment that they are not, i.e. that there exists a relation

(1)

) )

8
Z Uiz = 0
=1

where u , - - -

, U3 are elements not all zero in Kl '
quotient of o ( ) EVery Uy

1 . . ) may be written as a
olynomials in x with ecefficients in K. Multip

lying by a common
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denominator, we see that there exists a relation of the form (1) in which the
u;'s are polynomials i # not all zero. Dividing if necessary by some power of <,
we may furthermore assume that w, -, % are not all divisible by z. Write
u; = u;(0) + av;, with v;e Klz]; then (1) takes the form Sk 2wz =
g ) vz H1 212k wehave vy:(v;) = O because vy, (x) > 0 and #; ¢ Klx];
we have also »,,(z;) = 0 because z;¢ R, 8) and p; e 8. Therefore we have
vy {— 2 S taavzs) Z 7y(x) which meens that — D_jm vjz; € (b, S), whence
>k u;{0)z; ¢ £(b, S). But this eonclusion is inadmissible, because the elements
1;{0) of K are not all zero and the residue classesof 21, » -+, % modl‘lo 86, 8

are linearly independent over K. Thus we bave proved that z, -, % are
linearly independent over K{z). It follows that Q)

k N
2) = 3 dpn (@) S RK &2

N\

Since each v, (z) is =1, we have k = [R:K{(x)]. This proyés that & cannot
have more than (R:K(z)] zeros. Taking & = k, (2) becenids the inequality
stated in Lemma 1. )

Our next step will be to prove that the number Z’:;@(n;) vy, (&) of Lemma 1 is
actually equal to [B : K@) Lo, _

In order to do this, we introduce the subﬁng‘K}a:'l] of K{z). We remind the
reader that an element w of R is said to be integral over K [ '] if it satisfies an
equation of the form w™ + fao™ 4 e 8. = Owherefy, *-  Jm belong to
K[z™Y. If this is the case, w cannot haveahy pole outside the seb {p, -+, D"a}-
For, if p is a place which isnot a ze;o’of %z, then the ring o of the place p contains
K[z "] and is integrally closed (o §2), whence v € 0.

et n be the number [RiK{r)]. We shall see that we cen find a base
{wy, -« - a0e) of R withyrespect to K{z) whose elements are integral over .
K[z Letfw, , -« -, wa}-'be any base of R with respect to K(z). Then each

a Fa—h __ .
w, satisfies an equatioﬁ\of the form w," + Samgaws =0 "["1’5111] 'Pé-htf K{z).
y x| Set w, =

1 ‘o i ith f,» and g, In K
Wercan write eaghtfp,.,;\”m the :f‘orj.'% Toa/ g;_a w:t]B fonn 311 19 Kl 5 g
gowy 5 then we.kb‘ve wy T EA%-I Grrat .o and gupsr = ¢r P e BT,
which proves’.ﬁhat w, is integral over K[z ']. On the other hand, since w0, is the
PI‘OdllCtxof”&}: by an element # 0 of Kz}, it is clear that w1, --- , W form a
base oh B with respect to K(z). ‘ _
Let ¢ be an integer =0 such that v,,‘(ifly) z —o lgishl=sr= n),
and let g be an arbitrarily large integer (in particular, we {assu;ne th:;t i > o).
We consider the products P, , with 0 = p sp—olSvEn We have

vp: (T "ws) 2 — (@) — 0 Z ~#()

L On the other hand, if v is a place distinct from b1, © P , We

sinee », (x) = - Thi
9:( ) = whence ¥y (x p’w,) z 0. This means

have Vv(x_l) = 0, T’w(wv) z0(1=v < n)
that
=0 (mod?®™)

v, {2).

z

where b is the divisor Hf?-1 p¥, bs

H
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We shall denote by 2, the vector space over K composed of all elements of B
which are =0 (mod 5™) and by 9; the subspace of €, spanned by the elements
W, (02 p=p—0,1= v = n) The clements w, being linearly independent
over K(z) and the elements x™ of K{z) being linearly independent ovor K, it
follows that the n(x — o + 1) elements z™*w, are linearly independent over K
and that &, is of dimension n(s — o - 1). On the other hand, we have L CTREE™,
S), where 8§ = {p,, --+, p;}. We know that, if ¢ is the unit divisor, the space
KO, 8)/RE, S) is of dimension #d(b) (Lemma 1, §7), from which it follows
that S,J(ﬂ' N R, S)) is of dimension Zu1d(8). Now, an element of 2, N Si(e, §)
cannot have any pole outside § (beeause it is in L) or in S Geeause it is in
8(¢, 8)}; such an element is therefore a constant (Corollary 3,0 Theorem 1, §4),
which shows that &, N R(, S) is of dimension < 1 and thetéfore that ¢, is of
dﬂmmngmw+L&mﬂﬂC&mmbmmnﬁr+Déuﬁw+1,
whence N

d(b) = n — L= Un FAY
i

This being true for every sufficiently largey;%ré have d(b} = n. We had already
proved in Lemma 1 that d(b) < n; thus’v:?&éee that d(6) = n. Moreover, we see
that the dimension of £, , the dimengion’ of %, and the number pd(b) = nu
are integers whose mutual differences remain bounded as # increases indefinitely.

Lt -+, pyareall the distinet Z8ros of an element z #00f R, and b, = »,,(z),
the divisor b = [T%, ¥ is cga.ll}éd the divisor of zeros of z. We have proved

THEOREM 4, Let B b(i o Jfield of algebraic functions of one variable and let K
be the field of constants 0P E. Then the degree of the divisor of zeros of an element
z.of B not in K is [RAE(z)].

If we apply. 9141‘1 results to 2 instead of %, we see that = can have only a finite
num_ber of p ]eg. If g, -+, 0 are the distinct poles of z, and ¢; = —u, (),
the il}teg:;al;dlmor ¢=[[ia a3° is called the dipisor of poles of 2. Since K{z) =
Kz }2~§e“have the following result:

GOROLLARY. The notatio
sl wis [RiK{(D),

7 The divisor pcl_l.can also be writter in the form he! — I, v, This divisor
is callec! the- divisor of z, and is denoted by b(z). Tt is of course defined only if

% 5% 0;if z is & constant b(x) is the unit divisor. It i )
‘ ’ . It is el
e]ementﬁ.;.f 0 of R, then clear that, if z and y are

n being as in Theorem 4, the degree of the divisor of poles

blay) = dx)v(y), b = (d(p)
Our results establish the truth of

"THROREM 5. The dewisor of an element = @ of

ome variabl is of dgren 0. a field of algebraic functions of
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Let © be the group of all divisors of a field B of algebraic functions of one
variable, and let Dy be the group of divisors of elements of E. The cosets of ©
modulo ©, are called classes of divisors; two divisors which are in the same class
are said to be equivalent to each other. It follows immediately from Theorem 5
that all divisors in a elass arc of the same degree; this degree is called the degree
of the class. :

To conclude this section, we state in the form of lemmas two results which
have been established in the course of the proof of Theorem 4 and which will
be usciul later.

Lunmma 2. Let the notation be as in Theorem 4, and let b be the divisor of zergs of x.
Then the dimension over K of the space of elements of B which are = 0 {(mrod b7%)
(where u is an infeger >0) is =ud(h) — r, where T is an infeger which does not
depend on u. O

Lennas 3. Let the notation be as in Theorem 4, and let 9 be i]mring of elements of
R which do not have any pole outside the set of zeros of x. g’ﬁm there exists a finile

subset {wy, -, wy} of R, which contains o base of Btth respect to K(x), and
which is such that every -element of | is a linear com&@aﬁm of wy, -+, wn with
coefficients in K[z . _ R

For, the notation being as in the proof of Theorem 4, it is clear that R is the
union of the spaces % (1 £ p < ). We Have seen that the difference betwecn
ihe dimensions of &, and €, remains bounded; lct m be the largest value of this
difference. Let 2z, --+ , & be elemgp’aé *of 9 whose residue classes modulo the
space E”,.l Kz ", are linearly, independent over K. Then there existsa p > 0 .
such that 2, --- , % all beloqgjio {, ; since no linear combination of 21, -+, 2
with coefficients in K can bfe\in’i%,, , we have r = m. This shows that we can find a
finite number of elemends, wWasr, -+, Wy of N such that every element of &
38 the sum of an elemeft;of the space > r, Kiz™Tw, and of a linear combination '

of Ways, - » wy with coeflicients in K. Lemma 3 i8 thereby proved. -
A\ . _
\..

$

o
A
&«
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N
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\:



CHAPTER II
THE THEOREM OF RIEMANN-ROCH

§1. THE GENUS

Let R be a field of algebraic functions of one variable, and let K be the fiold of
constants of B. We have seen that, being given a finite number Of places of .R,
it is impossible to establish any necessary relation between the modes of hfe}un-'for
of an element of R at these places (cf. Theorem 3, I, §6). The-situation is quite
different if we consider infinitely many places instead, 6f/a finite number of
them. In this case, relations can be found between the behaviors of an element
of B at these places; for instance, we know that an elément of R admits as zeros
either all places (and this only in the case wheére)the element is 0) or unly‘a
finite number of them. The imvestigation 0{ these relations will be the main
object of this chapter. The problem can alde “be formulated as follows: given

for each place p an element z, of R and aﬁﬁteger my , does there exist an « ¢ B
which satisfies all the conditions O

@ Vvi{'f"; ) Zm,,

and, if so, what is the stmctli#é'of the set of elements z which satisfy these
conditions? ~

If all x,’s are 0, the elements which satisfy the conditions (1) clearly form a
vector space over KW shall refer to this case as to the “homogenecus case”.
In the general eage, il z is a solution of (1), the other solutions of the same
problem are obtéingd by adding to x the solutions % of the homogeneous problem
defined by tl{e,conditiuns »({y) = m, . Thus, as usual in linear problems, the
study of thelsystem (1) can be decomposed into two parts: 1) does there exist
at leasppu6 solution?; 2) what are the solutions of the associated homogeneous
probléﬁl?
. ;I:wét us first eonsider the homogeneous problem defined by the conditions
@) (®) 2 m, .

i infinitely many of the integers m, are >0, the only
the constant 0 (by Lemma, 1, I, §8). We shall be pri
where all integers ™y except a finite number are
conditions (2) are equivalent to the unique condition z = 0 (mod a), where q is
the divisor T, »™. The main interest of this case ig that, as we shall see, the
solutions then form g veetor space of finite dimension over K,
If a is any divisor, we shall denote by 2(c) the space of elements © ¢ B which
are =0 (mod q).
" Letbbea multiple of the divisor a; then €(b) is clearly contained in L(a). We
20

£

solution of this problem is
marily interested in the case
equal to 0: in this case, the
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shall first prove that 2(c)/2(8) is a vector space of finite dimension, and we shall
find an upper bound for the dimension of this space.

Let & be tho set of places which cceur with exponents 7 0 in either a or 5 Sis
therefore a finite set of places. We define the spaces &(a, S) and &(b, S)asin I,
§7. It is clear that $(a) C (g, 8) and ¥(b) < £(9, 8). Moreover, we have

(3} 2(6) = o) N &b, S).

In fact, the inclusion 2(b) C £(a) N1 £(5, S) is obvious. Converscly, if = € () 0
§(b, 8), we have »,(z) = 0 for all places p not n 8 because these places occur in
a with the exponent 0; since x e (6, 8), it follows that z e 2(b), which completes
the proof of {3}. O

The space 2(a)/2(b) is therefore equal to La)/ (R(@) N Kb, 8)). Aetording to
the first homomorphism theorem, this is isomarphic to (¥{a) + RG-SR, 9),
which is a subspace of ®(a, 8)/%(b, S). The latter space \bging of finite
dimension (Lemma, 1, I, §7), it follows that £(a)/ Q(b) is of finite.dimension. Since
S contains ali places which occur with exponents 0 in eifber a or b, it follows
immediately from Lemma 1, I, §7 that the dimensionceof R(x, 8)/K(5, 8) is
d(b) — d(). Thus we see that the dimension of £(a)/8(b) is at most d(8) — d{a).

Now we shall prove that 2(a} is of finite dimension. In view of what we just
proved, it is sufficient to prove that £(b) is of fibite dimension for some multiple
b of 0. We shall take for b an integral divisor which is multiple of a and which is
different from the unit divisor (it is easiiy seén that there exists such a divisor).
If x ¢ (b), then z has at least one zerq {because b is not the unit divisor) but has
no pole (because b is integral). Were's # 0, then 1/z would have no zero and
would therefore be a constant #0N\by Corollary 3 to Theorem 1, I §4) which is
impossible since @ admits ag zqi'of Thus we see that 2(h) contains only O.

If a is any divisor, we sh\a‘ﬂ denote by I(a) the dimension of the space ().
I b i a multiple of a, thén’ the dimension of 2(a)/%(b) is I(a) — I{b); therefore,
we obtain the inequs@_x} o) — I(8) < d(B) — d(a), or
ey O (o) + d{e) S U5 + d(b).

On the obli‘ér\hand, Lemma 2, T, §8 gives us some information about the
number, .@(:a')%"fbr certain divisors a. Let @ be any non constant element of B, and let
t be the divisor of zeros of z. Then we have (™) = ud(y) — rforall sufficiently
large integers u, where 7 is an integer which depends only on . This inequality
may be written in the form ™ 4+ 4@ z — Taking (4) into account,
we see that
) 0oy +d) 2 7
whenever b is & multiple of some ™. From this we shall be able to deduce that
the numbers I(a) + d(a) for all divisors a have a finite lower bound.

‘Lemma 1. If b and & are equivalent divisors, we have d(b) = d(b') and (D) =1(b).

The first assertion follows immediately- from Theorem 5, I, §3. In order to
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prove the second, denote by z an element of R such that b = b(z}0. Then the
conditions % = 0 (mod §) and zu = 0 (mod ¥') are clearly equivalent to each
other. Thus, if # ¢ 2(b), we have zu e £(b’); conversely, if 4’ e 2(b’), then 2 Ll e Q(b).
The mapping u — 2u induces a one-to-cne linear mapping of £(b) ontn ¥(0"),
from which we conclude that I{(b) = I(f).

It follows that (5) is still valid for any divisor b which is equivalent. to some
multiple of some 1 *. But we shall prove that this is the case for every divisor
Sof R

Let 3 be any place which is not a zero of z; then p is not a pole of ™', The
value £ taken by ' at p is an element of the residue field of p, whichus algehraie
over K (Theorem 2, I, §5). It follows that there exists a polynbmial f, with
coefficients in K such that f,(8) = 0, whence »,(f, (")} = Libet & = [, p"”
be any divisor. Then enly 2 finite number of the exponents B(p) are <0. We set

z = H:f;-b(v)(x—l)
where the product []’is extended to those places p'{;hich are not zeros of z and
for which b(p) < 0 (if there are no such places, s¢t'z = 1), For these places, we
clearly have »,(z) = —b(p), and any such plagé occurs in b’ = bd(z)b with an
exponent Z0. On the other hand, the anly\poles of f,{z™) are among the zcros
of 2. It follows that z has no pole outsid€ the set of zeros of z, and therefore that
any place which is not 2 zero of = gcewrs in 5 with an exponent = 0. Now, let
G, ***, G be the distinct zeros of'r, and let » be an integer such that —p is
smaller than the exponentawithﬁhich G, * -, Qaenter in B’. Then, since each g;
oceurs in ¢ with an exponert, =1, it is clear that ' is a multiple of r*. Thus
our statement that every?djvisor is equivalent to a multiple of some ™ is

proved. It follows thas\f(ﬁ) + d{b) = — 7 for every divisor of R,
We can define apN\integer ¢ by the formula

\,:’.\ —g+ 1 = min {I(8) + d(B)},
b m@in%vér all divisors of the field. This number g, which plays a prominent
role in ﬁl‘m\ tudy of the structure of R, is called the genus of B,
T?}gj genus of B is always =0. For, if ¢ is the unit divisor, we have d(¢) = 0
and the only elements of 2(¢) are the constants (as follows from Corollary 3 to

Theorem '1, I, §4), whence () = 1 and I{e) + diey = 1,
Observing that d(a™) = —d(a), we ohtain

TeEoREM 1 (RIEMANN’S TaporEM). Let R be a field of

. algebraic funciions o
one variable, g s /

: ¢, and let g be the genus of R. Let a be any divisor of R; denote by l{a)
the dzmens:?ln of the space of elementsx of R which are = () (mod a). Then we have
o) 2 d™) — g+ 1; the equality 1{a) = d(@™) — g + 1 holds Jor at least one

divis i 4 . ; .. .
it :ma;;) ;Tad, tf it holds for ay, then it holds also for any divisor a of which ao

The last assertion follows immediately from (4),

e e et
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§2. FIELDS OF GENUS ZERO

Let K be any field, and let B = K{(z), where x is transcendental over K.
Then R is a field of algebraic functions of one variable with K as its field of
constants (I, §3). We shall see that the genus of B is zero. The element z has a
single zero ¢ which is of degree 1, and the divisor of zeros of © is . We have
secn in the course of the proof of Theorem 1, §1 that any divisor b of K is equiva-
lent to a multiple b’ of some £ ¥, whence I(6) + d(b) = I(b") 4 d{b) = (") +
d(x ™). Since d(x™) = —u, we see that the genus g of R can be defined by the
formula

~g-+1= min {T") — el “

O=p<e N\
We shall compute I(f™*). An element u of B may be written f@ETRE™),
where f and h are polynomials with coefficients in K with @e* common
factor. Let us find at which condition » will be =0 (mod ). My is any irre-
ducible polynomial with coefficients in K, o™ is not a cor.;sﬁa:nt and therefore
there exists & place b, of B which contains (@) (Theorem\1, I, §4); moreover,
we have seen (I, §3) that p, N K[z™] consists of the elexdehts of Kiz '] which are
divisible by ¢(z ™) in this ring. Since , is not to be & pole of u, h{z ") cannot be
divisible by ¢(z). This being true for every irredudible p, & must be a constant,
and we may assume that = 1. If fis of degreesn, then 1 is a pole of degree m of
& (1, §3), and we must have m = . Thuys, the elements of B which are =0
(mod z*) are the linear combinations witl coefficients in K of 1, g, e, 2
whenee (1) = u + 1, and therefore g =\0. Thus we see that any field of algebraic
functions of one vartable which is amurely transcendental extension of s feld of
constanis i of genus 0. P\

Conversely, let K be a ﬁxlt" f algebraic functions of one variable which
is of genus 0. We shall see/that, if R has at least one place p of degree 1, then
R is a purely transcendéifal extension of its field of constants. We have, by
Riemann’s theorem, 40%) = d(p) + 1 = 2, from which it follows that there
cxists at least opgelement » of I not contained in the field of constants K
which is = 0 (m®dp ). The divisor of zeros of £ is then p, which is of degree 1,
and [R:K(z P= 1 by Theorem 4, I, §8, whenee R = K&™).

The conﬂi%ion that B should have a place of degrec 1 is certainly  satisfied
if K is algébraica,liy closed, because then every place is of degree 1. However,
. this condition is not always satisfied if A is not algebraically elosed. Let for
instance K be the field of real numbers; set E = K({z, 35}, where z is transcendental
over K and 2 + 4 + 1 = 0. Then the following facts can be established without
difficulty: K is the field of constants of R; every place of B is of degree 2; B 13 of
genus 0. Since R has no place of degree 1, it is not purely transcendental over K.

We shall prove a little later that a field of genus 0 has always a place of degree
either 1 or 2 (cf. end of §6 of this chapter). '
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§3. FiELDS OF GENUS ONE

Let R be a field of algebraic functions of one variable of genus onc. We shall
denote by K the field of constants of K, and we shall assume that X admits atleast
“one place b of degree 1 (this condition is certainly satisfied if K is algebruically
closed). We have, by Riemann’s theorem, I(§) 2 d(y®) = 2, from which it
follows that there exists an element z ¢ B not contained in K which ix =0
{mod p~®). The divisor of zeros of # " is either p or ¥, i.e., it is of degree | or 2,
If it were of degree 1, we would have B = K{z™") by Theorem 4, I, §§, and R
would be of genus zero and not one. We conclude that the divisor of zeros of + ' is
p', and therefore that R is of degree 2 with respect to K{z) = K{a").

Wehave I(p™®) = d(»®) = 3. It follows that there exists an clethent i e I which
is =0 (mod y°) and which is such that 1, z, y are linearly indepéndent over K. We
shall see that the divisor of poles of y is actually p*. Lé) be a uniformizing
variable at p. Then »,(xf") = 0 and zf* takes a value:ai;;-é 0 at p; sinee b is of
degree 1, we have « e K. Were the divisor of poles oy either p or p%, we would
have », (3"} Z 0 and y#* would take some finite vahie 8 at p. Then (y — o 'Bo)f
would take the value 0 at p, whence »(y — @ 3Bz) = —1. The clement =
y — o Bz would be =0 (mod p~) but Wogldﬁlét belong to K beeause 1, », y are
Jinearly independent over K; the divisar of\poles of z would therefore be p~' and
we would have [R:K{(z™)] = 1, which'is'impossible.

Since the divisor of poles of  is n’s0f degree 3, we have [R: K{y)] = 3. It follows
that ¥ does not helong to K(z), sinte otherwise [R :K{y)} would be divisible by
[B:K(z)]. Since B is quadratia over K(2), we conclude that B — K{x, 1. The
element y satisfies an equation of the form '

€Y + Ay + Bl) = 0

O
where A, B, € are ]}Dlynomials with coefficients in K which we may assume to

have no commQn factor. Since y is not in K{z), B and C are both 3 0; further-

:;;o;{e( ;hfa Poly‘ilon_a;]a] %(x) Y* + A@@)Y + B(z) in a letter ¥ with coefficients
%) ereducible. Since 4, B, € have no common factor, the polynomial
geodan s AX)Y + B(X) in the letters X and Y with coefficients in K is
1H§F1{~{clble m-K[?(, Y]. It follows that C(X)y* + A(X)y + B(X), considered
2g"g"polynomial in X with coefficients in K{(y), is irreducible. But Kz, y) is of

(Gegree 3_ over K{y); it follows that the degrees of 4, B, € are at most 3, onc of
them being 3. ’

lNOWQ lf M(X)-= aOXm + a]_Xm'_l + e + am is R polynomial Of degree m
rith coefficlents in K, we mey write (x) = 2™(a + a4+ -+ + 4 ");
since »,(x™) = 2, it follows that (M) = —2m. In particular, we see that

»(B(z)) is even; if 4 5 0, then » (4() ! .
R ' 3 y) = -,_3
| therefore different from »,(B(z)). It,pfouows that "(4(z)) is odd, and is

n(—A@)y — B(z)) = min (A (@), v(B))
{cf. I, §3). Since #(Cla)y) is even, we have »

(Cl2)y") = »,(B .
Let 8 and « be the degrees of B and ¢ respzctiveiyy); t-heb;(—(zxq),)f g "(._fq(f)g;
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whence 8 = v + 3. Bince § £ 3,v £ 3, wehavey = 0,8 = 3. Sincey = 0,
we may assume that C = 1. If 4 = 0, let « be its degree; then —6 < —2a — 3,
whence ¢ = 1. ' -

Now, assume that the characteristic of £ is not 2, Sct then 7 = ¥ + 4/2;
we have 35 = Bi(z), where B; = A%/4 — Bis of degree 3. We may add that the
equation Bi(X) = 0 cannot have a deuble root. In fact, were this the ease, we
could write By = BiB; , with B; and B; of degree 1 with coefficients in K, whence
(y1/ Ba(2))" = By(x). Since By is of degree 1, z would be contained in K{yi/Ba(z)};
the same would be true of y1 = Bu(z) yn/Baf{e) and of y = 31 — (1/2)A (=), and
we would have B = K{(y/Ba(x)), which is impossible.

Conversely, it can be proved that, if K is a field of characteristie #Z\amd
R = Ki{z, y), where z is transcendental over K and y° = B{x), B being apoly-
nomial of degree 3 with no multiple factor, then R is of genus one. Welshall not
give the proof here. >

Ny

§4. REPARTITIONS o\

Let R be a field of algebraic functions of one variable, ardlet K be the field of
constants of K. The problem stated in §1 was the \gﬁl‘lowiﬂg: given for each
place 9 of B an element x, of K and an integer my/find the conditions which

must be satisfied in order that there should e)gist,\an xz ¢ B such that

(1) (e — ) 29

®

for all places p. & : .

In order to treat this problem, it willbe convenient to introduce the following
notion: a mapping ¢ which assigns(to every place b of B an element g(p) of &
will be called a repartition if the{fi{?ﬂowing condition s satisfied: there are only a
finite number of places p for Fhich »,(x(p)) < 0.

The set ¥ of all repartitiobs is a subset of the set %, of all mappings p — Le(p)
of the set S of all placgsato B. Since R is a ring, ¥, is itself a ring, in which the
laws of compositioqﬁ:m“deﬁned by

§ (o DO = ) + 6

S o) (nr)(®) = LP k)

for all plaées p. If ¢ and ¢’ are repartitions, there are only a finite number of
places p for which »,(2(p)) and #,(2'(p)) are not both =0, it follows immediately
that ¢ — 1’ and 11’ are also repartitions. “Phis means that the set ¥ of repartitions
is a subring of ¥, .

If z € R we may associate with = the repartition 1. which maps every place p
upon the element z. It is clear that the mapping £ — . is an isomorphism of the
field B with & subring of the ring of repartitions. We shall allow ourselves,
whenever convenient, to denote by « the repartition r; which corresponds to the
element z of &. However, one should not confuse the value taken by the element
x at p (which is an element of the residue field of p) with the value taken at
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by the repartition r. (which is z itself}. In order to avoid this confusion, we shall
call the value assigned to a place p by a repartition r the p-component of .
The unit element of R is also the unit element of ¥. Since we have mapped R
isomorphically into %, it follows that we may consider ¥ as a vector space over R,
and, @ fortiori, as a vector space over K, which is a subfield of R. Whenever we
“ shall speak of X as of a vector space, it is its siructure of veclor space over K (and
not over R1) which we shall have in mind.
Let 1 be a repartition, and let p be a place of R; then we set

7 (8) = »{t(n)

N\
(it should be observed that, if = x ¢ R, then this definition gives'to the symbol
vy(x} the same meaning it had already); »,(r) is called the ordenaf the repariition
at p. It is clear that, if ¢ and y are repartitions, then O
H(E £ 2 min {n(0), W) 5l Fwle) + »).
Moreover, if »,(1} < (1), we have »,(r & 1) = ~i-’,,?.(1').

Let ¢ = [T, p™ be a divisor. We shall say that the repartitions ¢ and y are
congruent to each other modulo a, and “{e’s\hall write ¢ = 3 (mod a), if the
conditions »,(r — v) 2 m, are satisfied-for all places p (this definition agrees
- with the definition of congruence for elémients of B if r and y are in R).

Now, let us return to the problemy, defined by the conditions (1) above. We
shall make two further assumptions: 1) we shall assume that v{z,) = 0 for
almost all places p, ie., that the mapping y — z, is a repartition 1; 2) we shall

assume that the integers #m, are almost all zero, ie., that the symbol [ [, p™
represents a divisor 0. Undet these conditions, our problem can be formulated as
follows: does there exift'an z ¢ R which is = (mod a)?

De.note by ¥(a) the set of all repartitions which are = 0 (mod a); it is elear that
X)isa vector gibspace of X. Then our problem amounts to the following: doss
‘there exist anice R which can be written in the form t + ywith ye ¥(a)? Now, if
T = 1+ Pstheén r = = — ybelongs to the space X(n) + R composed of the sums
of elep:g@ts of X(n) and R; and conversely, i t belongs to ¥(a) + R, then our
prc{blem Is possible. Now, we shall prove that the zector space X/(X(0) + R) 75 of
fiwite demension.,

}Let @’ be 1 divisor which divides a. Then X(a') clearly contains ¥(a), Moreover,
given any ¥ ¢ %, we can always find a divisor o’ which divides a and which is such
that reX(a). For, set u(p) = min {0, #(2)}; since »,(r) = 0 for almost all
p’s, we have #(p) = 0 for almost all p’s; moreover, if a; =_—H #"® we have
t =0 (mod m). If o’ is the highest common divisor of a and a; , tflen a: divides a

a,ndfx belongs to ¥(a’). Thus, every element of £/(¥(a) + R) belongs to some
(X(e) + R)/(¥(0) + R); we shall prove that (X(a’) + R)/(%(a) + R) is of

finite dimension, and thas its dimensi
. ] on does not e i
which depends on g only. exceed a certain number

LEMMa 1. P damd . . .
() “Mf}&(a’)'ff W' divides .a, the space X(a')/%(a) 4s of finite dimension equal to

N .mM



REPARTITIONS 27

Let S, be a finite set of places which contains all the places which occur with
exponents 0 in either & or o’. Let u be any element of the space K(a', So)
(cf. I, §7); we associate to u the reparfition 3 defined by 3.(p) = wif peSo,
2{p) = 0if p ¢ 8. It is clear that 3. belongs to the space (') and that the
mapping  — 3« of (', So) into X(a") is linear. Tf « belongs to &(a, So), then g«
belongs to ¥(a), and conversely. It follows that the mapping # — #. defines an
isomarphic linear mapping of f(«’, Sp}/R(a, So) into %(0")/%(s). We shall see
that this mapping is onto. Let 3 be any element of %(0’). If p e 8o, let m, be the
exponent with which y enters in ¢. Malking use of Theorem 3, I, §6, we see that
there exists an element u e B such that »,{u — 3(0)) = my for all places pe So.
If m, is the exponent with which 9 enters in o/, we have »,(3(0)) = m, (because
4is in £(0")) and m, = m, (because o divides u). Since u = (u— 3(p)) Lo,
we have v (u) 2 m, , which proves that « is in f(a’, Sp). For the places\p'in So,
we have 3.(p) = u, whence »,{3.(8) — 3(0)) = m, . I qis a place wob it Sy , we
have 3.(a) = 0 and therefore »o(3u(a) — 3(a)) = ¥e(3(a) = 0 hdcatise 3 ¢ X(a').
Since the places g not in Sy occur with exponent 0 in a, we hayessd = 3 {(mod ).
This proves that our mapping of f(a’, 8o)/8(s, So) inta J{(n')/¥%(a) is onto.
Lemma 1 therefore follows from Lemma 1, I, §7. '

Now, we have to estimate the dimension of (X(a") HB)/ (¥(a) + R). According
to the first Noether homomorphism theorem, qurivector space is isomorphic to
the space X(a”)/(¥(e) N F(a) + B)). The elemexte u of B such that v + ¥(x) <
¥(a') are obviously those of %(a), i.e., those which are =0 (mod o’). The set of
these elements has been denoted in §1 by & (@"); thus we see that () N X() +R)
= %(a) + 2(¢/). Making use of the seeond Noether homomorphism theorem, we
see that (¥(n) + (a"))/%(a) 18 isombrphic with )/ Q@) N Ew). Now,
2(a") N %(a) is obviously identical\with £(a). We have gseen. (Theorem 1, §1) that
2(a) is of finite dimension I( ¢'@(a")/2(a) is therefore of dimension e’y — Ka).
Making use of Lemma 1,/We see that the space (X(e) + R)/(&(0) + R) is of
dimension < '

(@0 — = () — Ka)) = (@) + He) — @) + WD)

The sum d{n) —khﬁ) .depends only on a; the sum d(a’) -+ (o) isalways = —g¢ +1,
where g is thdgenus of E (Theorem 1, §1). It follows that (X(a’) + B/ ¥@) + R)
is of digne\r'ls\ion <d{e) + Iy +9—- 1 and this bound depends only on a. Set

Aoy = dle) + i@ +¢g— L

We can now prove that £/(£(a) + R) is of finite dimension <A(«). Assume fora -
moment that there would exist & > Afa) elements L, - -+, T of ¥ which would
be linearly independent modulo %(a) + R. For each £ (1 £ 7 £ k) we could
find & divisor o which divides a such that 1: ¢ %(ai). There would exist a divisor o’
which would divide ag , -« - o, and the elements r: would all be in ¥(0’), which is
impossible. _
We may even assert that the dimension of X¥/(¥(a) + R) is exactly aa). In
fact, we know that there exists a divisor @ such that Hap) + dlag) = —g + 1,
and that the equality (@) + d{a) = —¢ 4 1 holds for any divisor o’ Which
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divides ap (Theorem 1, §1). Thus we see that, if ¢’ is the highest common divisor
of ag and a, then (X(a") + R)/(¥(a) -+ R) is of dimension A{a), which proves our
assertion. Thus we have proved

Lumua 2. Lét o be a divisor, and let ¥(n) be the space of repartitions which are
=0 (mod a). If ¥ is the space of all repartitions, the space X/(X(a) + R) s of
dimension Ma) = Ia) -+ d{a) + g — 1, where I{a) is the dimension of the space of
elements of B which are =0 (mod a), while g is the genus.

This being said, we have seen that the problem proposed at the beginning of
this section is equivalent fo the following: determine whether & given repartition
1 belongs to the space ¥(a) 4 E. Let T be the residue class of ¥ modulo ¥(a) + E.
Since %/(¥(a) + R) is a vector space, in order for T to be 0, i€ is necessary and
sufficient that &(z) = 0 for every linear function & on ¥/(¥(r) "+ R). This can
also be expressed in the form that we must have w(x) = Oforevery linear function
@ on ¥ which vanishes everywhere on %¥(a) + R. Thugiwe see that the condition
of possibility of our problem can be expressed by ,a%gféstem of Aa) linearly inde-
pendent linear conditions on z.

In order for this result to be useful, we habe’to learn more about the linear
funections » which were introduced above,In the next section, we shall determine

the nature of these functions in the cade’where R = K(z), K being the field of
complex numbers. \ o

§5 DIFFERENTIALS

Let K be the field of complex humbers, and let B = K{x) be the field of rational
functions of = with compléxcoeflicients.

If u is any elemetgq‘f»R, we may consider the symbol udz as an element of
integral: if v is any path which does not go through any pole of u, the symbol
fudz has a mea,lzihg. We shall say that ude is a differential of the field K.

Let a be any eomplex number, and let p(a) be the place at which  takes the
value a. We ghall call the number 7y (1) the order of udx at p(a). Denote by
p(ee) th@’mique pole of 2. If we set &’ = 2 and consider u as a rational function
of ', ﬁhen the element of integral udz is the same as —ux’’dz’; it is therefore
Ha,tﬁral to call the number »yey () — 2 the order of udz at p().

Jf @ is any complex number, and if v is a simple elosed curve including a, but
fo other pole of u than perhaps o itself, in its inside, then the number

1
B (— 1)k L wdz

is called the residue of udz at p(a); it is clear that this residue is 0if }J(a.) is not a

pole of u. The residue of udz at p(e) is defined to he the number

i
27 (— 1)1;’2 fp udz

where T is a simple elosed curve including in its inside all the poles of u at a
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fnite distance. Letay, - -+, a, be these poles; for each <, let v: be a simple closed
aurve contained in the interior of T and including e; (but not any ¢; with § # 9)
in its inside. Then Canchy’s integral theorem gives .

fruda: 4+ gfﬁ udz =.0,

which shows that the sum of all residues of @ differential is 0.
Let ¢ be any repartition of the field B, If 9 is any place of R, set

(1) @™{(x) = residue at p of r(pjude.
Then, clearly, «’(r) = 0 for almost ali ’s, Set N '
w(ﬁ = EWU(E)) . N

the sum being extended over all places. The function « defined by this formula
is a linear function on the space ¥ of all repartitions. H ¢ = & qR,‘ “then o{r)
is the sum of the residues of the differential zyud2, and is thprefioré 0. Thus, o .
vanishes on the subspace B of X. NS

Let o = J]» p™ be a divisor. We shall say that the differential udz is =0
{mod a) if, for every place b, the order of udz at » is‘gvn(n). Agsume that this
is the case, and let 2(a™") be the space of repartitions which are =0 (mod o).
If ;e (¢, and p is any place, then we have »(p)) = —m(p). The order of
udz ai 9 being 2 m{h), we see that the order'of the differential r(p)udz at p is
20, whence o' (r) = 0. This means that @.i.?anishes ot the set X(a™) + E.

Replacing a by ¢, we see that any, differential udz which is =0 (mod ah
gives rise to a linear function « on.ff?he's'pace of repartitions which vanishes on
¥{a) + R: this is precisely the type of linear functions to the eonsideration of
which we were led at the end £ the last section. :

Now let us count how many linearly independent differentials udz we have
which are =0 (mod ol Write & = 1T, 9% If udz is to be =0 (mod ™),
we must first have, fopiany complex number &, Yoty () 2 —m{p(a)). Set h =
Lz — @)@ cthien we must have rp@(hu) = 0 for every g e K, which
means that hu ;’}xhust be a polynomial in 2. On the other hand, we must have
vy (U] — 2“; —m(p{®)), e, Bpelf) =2 — m(p(e)) + (B The
number gy (k) is equal to -y, m{p(a)), and -3 mp(@) — mp(=)) is
—d(0). Thats we find the condition vy (Hz2—de)If d{a) = 2, then f may
be an arbitrary polynomial of degree =d(n) — 2;if d(o) < 2, then f must be 0.
In the first case, we see that there are exactly d(a) — 1 linearly independent
differentials which are =0 (mod o).

Now, we observe that the function « which corresponds 1o & differential udz
is 320 if u 5 0. For, let a be & number which is neither a zero nor & pole of u,
and let 1 be the repartition defined by x(p(a)) = & = @)™, 1(p) = 0if p # p(a).
Then " @ (1) = u(a) #=0, while M) = 01 p = p(a), and therefore w(x) =
u{a) s 0. Thus we see that the differcntials udz which are =0 (mod o) yield
exactly max {0, d(0) — 1} linearly independent linear fanctions on the space ¥
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of representations which vanish on ¥(z) -+ B. On the other hand, the genus of E
being 0, the maximum number of such linear functions is Ma) = d(a) + o) — 1
(ef. §4). Let us compute I(n). In the computation which was made above, the
functions 1 were submitted to the condition = 0 (mod a '(p(=))"), and we
therefore have (e '(p(«)Y) = max {0, d{n) — 1}. This being true for every
divisor a, we have I(a) = max {0, d(a™") + 1}, whence d(&) + a) — 1 =
max {d(n) — 1, 0). We conclude that every linear function on the space of repar-
titions which vanishes on ¥(x) + R is generaled by some differential udx which
is =0 (mod o).

In view of this result, it is natural to set up the following definition. Let B
be any field of algebraic funetions of one variable, let K be the field of donstants
of B and let X be the space of repartitions. By a differential of ‘the field R is
meant a linear function w on ¥ which has the following property: there exists a
divisor @ such that w vanishes identically on %(a™) + R ,(}iv}iere %" is the
_ space of repartitions which are =0 (mod ™). If « is any divisor which has the
stated property, then we say that the differential w ig nﬁdtz'ple of a, and we write
o = 0 {(mod a). \%

It is clear that, if a divisor &’ divides a, a differential which is multiple of «a is
also multiple of o. If w and o' are differentidlé-and A, A’ elements of K, then
Ao 4 Nea' is a differential; if w is multiplesof o and o of ', then v + Vo' is
multiple of the highest common divisor, .Qf.II and o', The differentials of R clearly
form a vector space over K; those differentials which are multiples of a given
divisor a form a subspace of the space of all differentials.

We can now formulate as follows the result which was obtained in §4:

‘JI.‘HEOREM 2. Let B be a dield of algebraic functions of one variable. Let a be a
divisor of K and let 1 be a\@pﬂrtﬁz‘m in B. In order that there should exist an element

zof B _such that = ="y, (mod a), @ ¢s necessary and sufficient that w(r) = 0 for
every differential o hich is multiple of o

F.‘rom BOW F’l{z\‘fé shall denote by 8(a) the dimension of the space of differentials
Whifh are \_’0 {mod a). From what we have seen in §4, it follows that &(a) =
I(a. ) Q(a } + ¢ — 1, where g is the genus of the field. Thus we have proved

'Iigaﬂbm;_m 3 {TurorEM oF RieMaNn-Rocs). Let R be o field of algebraic functions
of\ane variable of genus g, and let a be a divisor of B. Denote by l{a) the dimension
of the space of elements of R which are =0 (mod a) and by &(a") the dimension
of the space of differentials which are =0 (mod 0. Then we have

o) =d{@™ — g+ 1 + s(H.

A. differential @ is said to be of the first hind when it is a multiple of the unit
divisor e. We have I{e) = 1, d{¢) = 0, which proves

_ TEEOREM 4, if’he space of differentials of the first kind of a field of algebr;:m'c Ffune-
tions of one variable 1s of dimension equal lo the genus of the field.
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§6. THE CANONICAL CLASS

Let R be a field of algebraic functions of one variable and let K be the field of
constants of B. Denote by @ a differential of B. Let also % be the space of reparti-
tions of R, and z an element 520 of K. Then the mapping 1 — w(zr) of ¥ into K
is linear and assigns 0 to every element of B. If ais a divisor such that w = 0
(mod a}, we have w(zz) = 0 wheneverzy = 0 (mod oY), i.e., whenever ¢ = 0
(mod b7 (x)). It follows that our mapping is 2 differential and is a multiple of

ab(x); we shall denote this differential by aw; if z = 0 we denote of eourse by
0.0 the zero differential. It is clear that '

{z + e = 20 + tw;  zle -+ o) = 2w+ xw’;

(exYw = z(@'w); llw=uw .
2\, A

{where z, 2’ are in R and @, o differentials of E). N

TrEOREM 5. Lel w be any differential #0 of a field B of algebrascg fwzcﬁons of one
variable. Then every differential of R 18 of the form xw, with & «R. :

" et o be any differential of R, and let a and o be divigets such that @ = 0
(mod o) and o' = 0 (mod o’). Denote by ¢ the genug{sf,‘R; let b be an integral
divisor whose degree satisfies the following econditions: d(b) > g — 1 — d(a),
d@p) > g — 1 — d(@), d(b) > 3¢ — 2 — dig)>vdla’) (we may teke b = v",
where p is a place and m is sufficiently large). Weset ¢ = WY, a = 10 7);
by Riemann’s theorem, we have a = =g+ 1>0 and similarly o’ > 0.
Let xy, - - - , &a be a linearly indepeqdéﬁiﬁ olements of B which are =0 (mod
a5 let 7y, e, Zar bE @ inearly’ independent elements of R which are
=0 (mod a''p%). Then the diffemntials 20, x}w' 1=2i24al <j=d)are
all =0 (mod b ). Now we hs,{i,i)y Riemann-Roch’s theorem, 8(57) = U(8) +
d(b) + ¢ — 1, and I(h) =M, because % ig integral, whence 3™ = dd) + g
On the other hand, weshave ¢ + d = d@) + @) + ;‘Zii(b) — 2¢ + 2. Since
d(b) > 3¢ — 2 — diap> dld), we have @ -+ @ > 8(67). It follows that the
differentials 2w, @ “are linearly dependent. Therefore, we have a relation
of the form ‘(§" '

> xiz,) o+ Zl)\}a:}) =0

\ =1 =

where Ay, -+, Moy A sy no» are elements not all zero of the field of constants

of R.Sety = 2 tmAiZi, ¥ = S % Nz ; then ¥ and y' are not hoth zero and

1o+ Yo' = 0.1y were0,¥ would be = 0 but yo Wlould be 0, which is impossible

since « = ¢ 'y = 0. Thus ¢ # 0and & = @y ) which proves The(?rt?m 5.
Let « be any differential #0 of B. We shall prove that the d_egree of a divisor &

such that « = 0 {mod a) cannot exceed 29 — 2, wher_e g is the genus of-{Z.

Y &y, --- , 2, are linearly independent elements of R which are = 0 (mod & IR

Tw, -+ , 2w are linearly independent differentials of the first kind, whence
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% £ ¢ by Theorem 4. Thus we have (&™) < g¢. On the other hand, we have
o) = d(a) — ¢ + 1 + 3(), and 8(n) = 1 since v = 0 (mod a). It follows
that d(a) < U@ %) + g — 2 = 2¢ — 2, which proves our assertion.

Next we observe that, if a differential o is multiple of both the divisors a
and o, then it is multiple of the least common multiple b of a and a’. To prove
this, it will be sufficient to show that ¥ C X0 + ¥, Let m, and m,
be the exponents with which an arbitrary place p enters in a and o respectively;
then p enters in b with the exponent #, = max {m,, my}. If © is any repartition
in X(07Y), we set 3(p) = r{p}if ny = my ,0(p) = Oif n, = m; > m, ; we set also
¥ (p) = z(p) — 9(p). It is clear that the mappings p — y(p) and p — v'(p) are
repartitions Y and ¥, that £ = v 4+ Y, that v is in ¥(a™") and ¥ in&a’' ™).

In view of what we proved before, among all divisors a such thatw = 0 (mnod a),
we can select one, say 6o, of largest possible degree. If a is any divisor such that
@ = 0 {mod ¢), then w is also multiple of the least commomdtltiple of a and a .
This least common multiple cannot be of higher degree thdn @ and must therefore
coincide with ay . Thus we see that to every differential & # 0 we can associate a
divisor b(w) of which w is & multiple and which 48va multiple of every divisor
of which « is a multiple. The divisor b{w) is gbylously uniquely determined by
these properties. It is called the divisor of the defferential w. If p is any place, the
exponent with which p enters in d(w) is talled the order of w af p and is denoted
by vp(w). If () > 0, then p is said to\bed zero (of order v, (w)) of w;if »y(w) < 0
then p is said to be a pole (of order¢=7,(w)} of w. If z is an element > 0 of R,
it is clear that the divisor of the~differential zw is b(x)b(w).

Tt follows from Theorem 5 that the divisors of all differentials 0 of R are in
the same class; this class is@alled the canonical class of the field E. (It should be
observed that there always exists at least one differential <0 of the field R.
In fact, let a be any‘it}te ral divisor of degree >1; thén, by the Riemann-Roch
theorem, we haw; 5@71) =) +da) +g9g—1> 0.

Q.
IHEORE'M G\wa degree of the canonical class of o field R of algebraic functions
of one varigblé4s 2g — 2, where g 4s the genus of B.

Let‘_egbe any differential 0 of R; then, of course, 3(b(w)) = 1. We shall
Droxe that this number is equal to 1. If «' is any differential 20 which is = 0
(nod b(w}), then d(w’) is a multiple of (w). Since b{w') has the same degree as
b(a:z), “lfe_have b(o') = blw). If we write o’ = zw, z ¢ R, then d{z) must be the
unit divisor, whence z ¢ K, and this proves that :ﬁ(h(w)) = 1. On the other
hand, the diﬁereg}tials of the first kind are the differentials zw for which « is
= 0 (mod (d(w))™), whence I{{b(w)) ™) = g, by Theorem 4, §5. By the Riemann-

Roeh theorem, we have H(ble))™) = N
0w — 21.3 ave I{{dw))™) = d{db(w)) | g + 1 4+ 3(b(w)), whence

CoroLLARY. Let R be a field of algebraic Junclions of oné .
. . one variable of genus g.
If o 4s a-divisor of R of degree >2¢g — 2, then we have Y = dfa) ~ ,;g+ 1,

In fact, no divisor of the eanonical class can be s multiple of a, from which it
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follows that no differential 0 can be multiple of a. The corollary follows
therefore immediately from the theorem of Riemann-Roch.

We may now give an equivalent formulation of the theorem of Riemann-Roch
(this new formulation Wwas actually the original one):

Tunores 7. Lel o be a divisor of o field B of algebraic functions of one variable,
and let o be a divisor such that aa’ belongs to the canonieal class. Then we have.

o™ = dl) —g+ 1+ Ia™™).

Yor, let o be any differential ¢0. The differentials which are = 0 (mod a)
are the differentials zw for which z = 0 (mod a(d(w)) ). Thus we have E(a)\=
Ha(d(w)) ™). But (a(d@) ™ "a = dla) belongs to the eanopical class, which
proves that a{d(w)) " is equivalent to o~ and therefore that Ha(b(e)) ) Sila’ __1).
Theorem 7 therefore follows immediately from the theorem of Rieu@hn-Roch.

As an application of Theorem 6, we shall prove that a ﬁel@v.R of algebraic
funetions of one variable which is of genus zero admits a place frv.hjch i of degree
either 1 or 2. Denote by K the field of constants of & and"by d the smallest of
the degrees of the places of R. Then we shall see that the-iégree of any divisor &
of B is divisible by d. Let n = d{®), and assume for a ;noh&ént thatn 5 0 (mod d);
then we may write n = kd — #/, with 0 < 7 <gdn Lt p be & place of degree d.
Making use of the theorem of Riemann-Roch, sve*have )y 2 kd—-n= n'.
Since 7’ > 0, there exists an element ¥ # Q'o'f,R' which is multiple of pFa. If we
write d(y) = p “ab, b is an integral diviser of degree n'. Since w > 0, there
exists a place g which ocours with an ,ejyg'pcinent = 0 in B; but this is impossible,
since it would imply d(q) & »' < d:~Thus we see that the degrees of all divisors
of R are multiples of d. But, singe, is of genus 0, every divisor of the canonical
class of R is of degree —2; therefore d'is gither 1 or 2. _

If R has a place of degrée)l, then it is a purely iranscendental extension of K
(ef. §2). If not, let p be pliceof degree2; then, by Riemann’s theorem, Iz 3,
and B contains a nofconstant element 2 which is = 0 (mod 5 ). The divisor of
poles of z is cle@i‘ﬂﬁ_ Making use of the coroilary to Theorem 4, I, §8, we see
that R is quadfatic over K{z). : '

P ’
/NN §7. THE LOCAL COMPONENTS OF A DIFFERENTIAL

Let us return for a moment to the notation of the beginning of §5, where we
had introduced directly the differentials w of a field of the form K{z), K being
the field of complex numbers and = transcendental over K. To any 2 e K{z)
we have associated a differential w = udz which was defined by the formula

(1) wlz) = Z @ (),

B

the summation being extended over all places p; «'(z) was a funetion Whi_ﬁh

depended only on the p-component £(p) of ¢ - _
Now, let R be any field of algebraic functions of one variable and let @ be &
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differential of B. It will sometimes be convenient to have a representation of o
by a formula of the type (1) above. We shall now derive such a representation,

Let b be any place of B. We define the p-component of w by the following
formula:

&* (1) = ()

where, 1 being any repartition, z* is the repartition which assigns r(p) to b
and 0 to every other place. It is clear that o is & linear function on the space of
repartitions and that «'(z) depends only on the p-component of r; we may
therefore consider «" as a function on R. This function is called the p-componeni
of w. - ~

Lenaa 1. Let e be a differential of R, and let, for each place v, @}, be the p-compo-
nent of w. Then, if t is any repartition, there are only ¢ finsfeswtimber of places P
for which «*(¢) 3= 0, and we have o(r) = 2, ' (L) L >

7%

Leta = [T, v*® be a divisor of which « is a mult\iple. There are only a finite
number of places q which fail to satisfy at the séinde time the two conditions
a{q) = 0 and »,() = 0;let qu, ---, g be thege'places. If a place v does not
oceur among them, then the repartition Whicﬁassigns r(p) to p and O to every
other place is & multiple of 0, whence/w() = 0. Let r: be the repartition
which assigns £(q;) to g; and O to evéry other place; set r' =2 =1 1:. Then
t — ' is a multiple of a7, whque"w(“g) = w(y) = Dtma(r) = 2,2
Lemmas, 1 is thereby proved. %%~

Lemua 2. The exponent with which o place p occurs in the divisor dlw) of @
differential © = 0 of R is &he largest infeger m for which it is true that o’ (z) = 0
for every x ¢ B such tha{‘;r;(x) = —m.

Set dw) = [T, 84" Let = be an element of R such that »,(z) = — a(y), and
let 2 be the repattition which assigns  to p and 0 to every other place. Then 2’
is clearly a mulfiple of (b(w))™, whence w(z") = &’(z) = 0. On the other hand,
there exigta's repartition r which is a multiple of y~'(8{w))™ but for which
«(z) 70 qis a place > y, thene(£(a)) 2 —a(g), whence w*(z) = " (z(a)) = 0.

It fellows that w(1) = &’(r) = «"(2(y)) 5 0; on the other hand, we have
'.np‘.(ﬂb)) 2 —a(p)— 1. This proves that a(p) = m.

COROLLARY. If w is a differential 5 0, we have o* % 0 for every place .

§8. FIELDS OF ELLIPTIC FUNCIIONS

Let ¢ and §' be two complex numbers ¢ 0 whose ratio /¢ is not a real number.
We shal-l consider the elliptic funciions f(z) with the periods ¢, ¢, i.e., the functions
HE)! w!:uch are meromorphic in the whole z-plane and which admit ¢ and '
as periods. If f and g are elliptic funetions, then the functions f + ¢, f — &

fg and (ﬁ g # 0) f/g are likewise elliptic. Tt follows that the elliptic functions
form u field R. Every constant function 13
funetion with its const

numbers.

elliptic; identifying any econstant
ant value, we see that R contains the field K of complex
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We shall prove that there exists at least one non constant elliptic function.
It m and n are integers, we set {mn. = m{ 4+ n¢'. By the sign > .n we shall
understand a summation extended to all integral values of m and n except
m = n = 0. We first show that the series '

W f‘: 1 rml At

is convergent. Denote by P the parallelogram of vertices 0, {, ¢, r+ ¢ Pis
therefore the set of ecomplex numbers of the form t¢ + ¢, where i, ¢’ are real
numbers from the closed interval [0, 1}. Let P, be the parallelogram deduced
from P by the translation of the complex plane which brings 0 at {ux LTt s
clear that no two of the sets Pa.. have an interior point in commath, Denote
by d the diameter and by A the area of P. Let T(E) be the closed cireular disc of
center 0 and radius B, and let »(R) be the number of points fm,“’w'hié'h He in T'{&}.
It is clear that {mx € ['(R) implies Pn. CT(ER 4+ d); it fo]quvs that Av(R) =
#(R + d)°, whence »(R) £ (/MR it B 2 d. Let (Busv™ 5 Be, «<-) be an
increasing sequence of nunbers, all 2d, such that \thy’ series Zf,..; RiH/R;E
is convergent. (for instance, R, = i), The nmnbelg.({f\ﬁombinat.ions (m, n) such
that Be < | fmn | < Renris £ v(Basd), whence .~

1 » 2 4'il'RIc+1
! i N e L w
Tror et m

where e is the sum of the finite nﬁmﬁéf of terms of the series which are >R
Now we consider the series RS |

8 3
N\ 1 1 }
2 \ —_— 3 — 2 (-
( ) s J’gl {(3 - ;‘m.n)2 ?:‘,n
NS/ . .

Tet ¢ be a number/<d/2; we surround each {um.n = () by an open circular dlsc_ of
center £ » anddQitss &, and we denote by D the set which remains after exclusion
of all these dig.sé&i:om the plane. We shall see that our series eonverges uniformly
on every hefinded subset £ of D. We have

N\ ) 1 ' 1 2 — 22Cmn
(Z - g'm,n)z - f?n.n = f?n,n(z - fm.n)2-

Let p be an upper bound for the absolute values of the points of B.If | {mn | = 2p,
2e E, we have | 2 — {ma | Z (1/2) | fmon by whence

! 1 _L < 4p? Sp ..
I = R P

There are only a finite number of combinations (7, 1) foz: which | ;m,n[ < ?p,
On the other hand, the convergence of the series (1) implies that of the series
2omn | €mn |*; this proves the uniform convergence of (2)on E.
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_ It follows that the formula

1
defines a function f{z) which is meromorphic on the whole plane except perhaps
at the points {m » , and which has 0 as a pole of order 2. Furthermore, it follows
from general theorems on analytic functions that the derivative f'(z) of f(2) is
given by the formula
) = ~2 o3y 1
1@ =-5-22 N
If we replace z by 2 + ¢ or 2 + ¢/, the terms of the series on the xigitt side of this
formula are permuted with each other. It follows that f/{z) .{i&mits the periods
‘¢ and {7, and therefore that the functions f(z + ¢) — flehand f(z + ) — f(z}
are constants. On the other hand, it is clear from the expfession of f(z) by a scries
_that f{z) is an even function (i.e., that f(—z2) = f(2)).8ince f(z + ) — flz} =
F&/2) — f(—¢/2), we have f(z + ¢) = f(2), and We would see in the same way
“that fz 4+ {") = f(z). It follows that f{z + {aw) = f{&) for each (m, n) and
therefore that {.. » is a pole of order 2 of f(z)/Fhis proves that f(z) is an elliptic
function, which is not constant since it has’}oles.
Now we wish to prove that R is a fgefci of algebraic functions over K. Since K
1s algebraically closed, f(2) is transcefidentsl oyer K; it will therefore be sufficient

to show that R is algebraic of finite degree over K{f(2)}; in fact, we shall prove
that [R1E{FGD] = 2.

Laua 1. An elliptic fusiction h(z) which has no pole is constant.

For, k(z) is obviousiynan entire funetion. It is bounded on the parallelogram P.
On the other haqdi if z is any complex number, we can find integers m and n
such that z Sain ¢ P. Since h(z) is elliptie, we have h{z + tmm) = R{z). It
folk_;ws that#(e) is bounded in the whole plane and is therefore s constant.

N(_)W, weprove that any even elliptic function g(z) belongs to K{f(z)). Since
g(z) is seromorphic in the whole plane, it has only a finite number of poles in P.

F]rqn;'fthis. finite nun.lber, we select a maximal subsystem {a;, --- , ax} with
p .t.}ze}ollow:mg Properties: no two of them differ from each other by either ¢ or {';

nene of them is either 0, ¢, ¢, or ¢ + '. Let ¢; be the order of the pole a;. The
only poles of f(z) m P being 0, ¢, ¢'yand ¢ + ', none of the numbers ¢; is a pole
of fi2). We construct the function gi(z) = g(z)H‘:-‘_l(f(z) — fla))*: Then none.
of. t.he pomts ar, -, 4 is a pole of gi(z). If o’ is a pole of g(z) in P which i8
d.lstmct fro‘m {},_ &8, and ¢+ ¢, then o is either of the form a; == ¢ or a; == {'
ginece ¢ (2) is e_lhptic, a’ 18 not a pole of g(z). Thus we see that the only possible
poles of gi1(z) in P are 0, ¢, ¢, and 4+ . On the other hand niz) 15 even. It
follows that the Laurent expansion of #1(2) around 0 is of the f(;rm

@) = 3% 1 3 o
h) ;z%'!-;odkz .
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We shall prove that g (z) can be written in the form yef "(2) + vif ) I SR S P
with constant v, 71, <=+, Vs - S€b ¥ = &3 then, clearly, gi1(z) — o (2) admits 0
as a pole of order < 2r. Suppose that, for some i < 7 — 1, constants yo, " - Y4
have already been determined such that glz) — St o Hz) admits 0 a8 a
pole of order <2(r — k). Since this funetion is even, its Laurent expansion
around 0 is of the form : :

—h—1 o
<
>, =+ 2 diad”
=0 2 Jmi)
and, if we set vaq1 = Cr—n-1b the function g1(z) — v ~i(z) admits 0 as &

pole of order <2(r — h — 1). By this proeess, we eventually get & funetlon
of the form g:{(2) — Sty "~¥(z) which admits 0 as 2 pole of order <2\ This
funetion, being even, has 1o pole at ail at 0. Being elliptie, it does not e any
of the points {m n» as a pole. On the other hand, this function has @iy ‘pole in P
outside of 0, ¢, ¢/, or ¢ + ¢ Therefore it has no pole at all, ang1~it is a eonstant.
~,. This proves that our original funetion g(z) can be expréssed as a rational
funetion of f(z). O

Now, if ¢(2) is any element of R, s0is o(—2), and the rrgapping o gle)— p(—2}
is obviously an automorphism of order 2 of B. It fplie}vs from what was proved
above that the field of elements left fixed by o8 B(f(z)); we conelude that B is
algebraic of degree 2 over K{{2))-

Let a be a complex number. The set Da of elliptic functions which do not admit a
as a pole js clearly a subring of BE. This .ijing is # RB. For, if @ is not one of the
points £m.a , then (f(z) — f(a))™ doespot belong to 9, , while I & = Imay then
§(z) ¢ 0, . On the other hand, it ig-Obvious that the inverse of an elliptic function .
which does not belong to 0, i8 M) - Thus we see that 0q is a V-ring in B {over
K): we shall denote by Ya the corresponding place of E. The places which cor-
respond jn this manner fo)e and to & 1 {mn 216 obviousty identical; on the
other hand, if ¢, o’ Aré-tomplex numbers whose difference is not one of the
HUMbErs {om,n , the PIACES Vs and pos are distinet, because f(z — a) belongs 10 Oer
but not to 0s . NN

Now we shall})rove that every place p of R is of the form p, for some a. Let m
be an integer greater than the genus of R, since d(p™) = m, it follows from
Riemafin’s “theorem that I(p ) = 9. Thus, there exists & function %(2) ¢ B
which i8"not eonstant and whose order ab €very place 7 pis 20. If p were
distinet from all places Pa the elliptic function w(#) would not have any pole,
which is impossible in virtue of Lemma 1. If @ is any complex number, there
exists an elliptic function pa(2) which has a simple zero at a, viz, flz — a)'f fiiz = _a) .
If A(z) is any elliptic function, and » the order at a of the memmorphm‘ funetion
R(z), then h(z) = (pa(2))'H (2), Where p'(z) is an elliptic function which has o
neither as a zero nor a pole, and which is therefore a unit in the ring of 1.;he
place p, . It follows immediately that vyo(h(2)) I8 equal to the order of the function
h{z) at a. . )

Now, we shall determine the genus ¢ of the field B. I Do ig the place which
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corresponds to the number 0, it is clear that f(2), considered as an element of R,
is multiple of the divisor o, and that £/(2) is maltiple of the divisor ;°, Thaus,
if ¢ and b are integers >0, {(f(2))°f '(2) is multiple of 90°*~%, while (f ()" is multiple
of p5”. Let m be an integer which we shall choose larger than the smallest of
the numbers 2, 25 — 2. Denote by m, the largest integer which is < (m — 3)/2
and by m, the largest integer which is <m/2. If @, b are such that 0 =asm,

0 = b = ms, then (f(2))%'(2) and (f(2))" are multiples of po " Them; + my, + 2 =
m functions obtained in this way are linearly independent over K. For, lot
P and @ be polynomials with complex coefficients such that Pf@)f(2) +-
Q(f(z)) = 0. Replacing 2 by —z in this identity and observing that f/(2) is an
odd funetion, we get —P{IE)(2) + Q) = 0; since f(z) %0 and flz) is
transcendental over K, this implies P = @ = 0, which praves our assertion.
Thus we see that I(33™) = m. On the other hand, it follows\from the corollary
to Theorem 6, §6 that (™ =dpt) — g+ 1 = m_ . 4+ 1; therefore we
have g < 1. We shall prove that g canmot be 0. In oider to do this, 1t will be

- sufficient to prove that an elliptic function A(z) whieh is multiple of p;* is a
constant. The Laurent expansion of h{z) around\Bus of .the form hz) = a/2 +

o 4z Tt follows that 0 is not a pole of théelliptic function h(z) + h(—z),
and therefore that this function has no pole’whatsoever and is a constant C.
If we set hi(2) = h(z) — C/2, then k() i an" odd elliptic funetion and is multiple
of s ". We have hi{—£/2) = —hi(¢/2); bo*the other hand, since —¢/2 = 2 —¢,
we have also hi(—¢/2) — halt/2), hence h:(¢/2) = 0. In the same way we
would see that A (f'/2) = (. SindeMss € 1y, we see that ky(2) is multiple of
the divisor po'pesbess , which inbfdegree 1. It follows immediately that hy(z) = 0,
whence 2(z) = (/2. Thus e have proved that a field of elliptic functions is of
genus ane. o)

. Since F(z)ig an oddguﬂction, it does not belong to K{f (2)}; since R is quadratic
over K{f(2)}, we haye R = K(f(z), 7). On the other hand, the function (f'(z))*
s even and admif8 0 as a pole of order 6. It follows that (f7(z))? is of the form
P(f(z)), where(Pis a polynomial of degree 3. We rediscover in this way the
generation of elds of genus one which was indicated in §3. In our case, it can
be seen Ev\{(slmut difficulty that the polynomial P(Z) is of the form 47° 4 aZ + b.

AN
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\



CHAPTER III
THE p-ADIC COMPLETIONS

§1. DEFINITION OF THE J-ADIC COMPLETION

Let K be the field of complex numbers and let z be transcendental over K.
If u(x) is a rational function of x and a ¢ K, then u(x) can be represented on
a neighbourhood of @ by its Laurent series , N\

o

0 ul) = X b — ot O

i \,

However, not every function representable around ¢ by a serie§ of this type is
rational. In some arguments, it is convenient to consider theséf of all functions
of z which are meromorphic at @, i.e., which are represetable by a Laurent
series around a. The existence of this set depends“\of course strongly on
the topological properties of the field K, since a seriég Jike the one which ocours
on the right side of (1) will only represent 2 fulgcjiﬁn when it is convergent on
some neighbourhood of a. However, for all algebraic purposes, only the sequence
of coefficients of such series matters, not the'fact that they converge in some re-
gion. This leads one to consider, instead:f‘the set of meromorphic functions at
@, the totality of all series of the form{*

@) 4 {lci‘;\ck(x it ﬁ')*;
A\ i _ :

whether such series are gdnyergent or not. The generalization of this set ?f
formal power series to the’ abstract case of an arbitrary field £ of. algebraic
functions of one variablé’ (instead of the field K{z) considered above) is what we
shall call a completion of the field R.

Let then p beﬁé.\place of the field B. We chall say that a sequence (zn) of ele-
ments of B gmiz!érges at p to an element z of B if the condition

® U . lim #,{x — %) = ®
i8 satisfied. If this is the case, we have, obviously,
(@) lim py{Zn — %) = -

However, a se av satisfy the condition (4) without satisfying 3)-
, quence (r,) may Y we shall say that it 5 a

Whenever a sequence (z.) satisfies the condition (4),

Cauchy sequence at p. .
Let X be the set of all sequences (Fo)isa<e 0f elements of B. We make X into

aring by defining addition and multiplication in the following way:
39
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@a} + ¥n) = @s + ya),
(xn)(yn) = (x”yﬂ)'

We shall see that the Cauchy sequences at p form a subring of X. That the
difference of two Cauchy sequences is again a Cauchy sequence follows imme-
diately from the formula

Vo (@ngr ~ Ynr1 — (g — ¥»)) = min {Vp (Tngr — Zu), Vo (Yns1 — yn)}

In order to treat the case of the product; we establish first

Lumma 1. Let (2,) be a Cauchy sequence at 1. Then either ) (x“)\ e'ncr\eases -
definitely with n (and then (z.) converges to 0 af D), or the number§ y(z,) are all
equal to each other from g ceriain value of n on, O ’

In fact, assume that 1{z.) does not inerease indeﬁni;elg} with #. Then there
exists an integer N such that m(2.) < N for infinitely, mfaﬁy values of 2. On the
other hand, there exists an index #g Such that », (2, yo Z.) 2 N for all n = n, ;
We may assume that ng is one of the indices n fobwhich »,(2.) < N. Then we
assert that v, (z,) = v,(z,,) foralln = 7o . Thiglistrue for n = n, . Assume that
1t is true for some % = 7, . Then we have 20\= 7, 4+ (2,4 — Za) and

Bl = ) 2 N 2N = wyla),

from which it follows that »,(z,s) S0 @) = 5@ (cf. T, §3).
This being said, let (z) and (y,ybe Cauchy sequences. We write

Tattlfnir — xny?{%; UnlOnss = B) + Zupanss — ).
It follows from Lemma Iﬂﬁt there exist integers A and B such that
D@ 2 4, niy) z B
for all n's. Therefore’we have '

£\ '
Pp(xn_;.]\u};rf - 2.4) = 1min {B + wlzay — z.), 4 + Vo ltgy — yn)}
which pro¥es that », 2y, — 2
(Tayg)eis a Cauchy sequence,
shalt denote by X, the ring of all Cauchy sequences at b, and by X the
set of all sequences which converge to 0 at p. Then % is clearly a subset of X, ;
we shall see that it is an idea] in Xo. It is clear that the conditions (z,) € ¥,
(yn) € ¥ imply (z, — ¥s) € X. Let (x,) be a sequence belonging to X and (z,) a
sequence belonging to X, . T¢ follows from Lernma 1 that there exists an integer
€ such that »,(z,) > ¢ for all », whence »(Zazn) 2 € - ¥y(%.), which shows
I;ha,tw #(T2,) increases indefinitely with %, and that (r.z,) ¢ ¥. We shall denote
by B, the ring Xy/%, and we shall investigate the properties of this ring,
Toevery z ¢ B we ean associate the sequence (%.) defined by x, =

o o A = gz for every
7. We obtain in thig way an isomorphie mapping of the field B into the ring

aYn) Increases indefinitely with » and that
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of sequences of elements of E. If the sequence (x,) corresponds to an element
of R, then it 1s clear that it is a Cauchy sequence, and that it converges to 0 only
in the case where @ = 0. It follows that the set of sequences which correspond
to elements of I is in X, and is mapped isomorphically under the mapping of Xo
onto Ry = Xo/X. This means that we have an isomorphic mapping of B onto &
subfield of &, . We shall allow ourselves not to distinguish between the elements
of R and the corresponding elements of E, ; in other words, we shall speak as if
R were a subring of R, . Moreover, if an element £ e R, is the residue class modulo
% of 2 Cauchy sequence {x,), we shall indicate this fact by writing
Z = limu ol . ~

If z, = « for every z, we clearly have x = Iy s - a

Now we shall prove that B, is itself a field. Let I be an elemeni;.\’#ﬂ’of By
set 7 = LiMnwts , Tu € B. Since the sequence (x,) does not conyerge to {d, but
is a Cauchy sequence, it follows from Lemma 1 that «, # 0 provided n is suffi-
cently large. Define x, to be ol if 2, 7 0 and to be O if @ = 0. Then, for n
sufficiently large, we have Zni — o = 2707 (@ — Tag)s On the other hand,
7(Za%n11) remains constant for n large enough (b)i Lgn{m? 1), while v, (Znt1 — Z5)
increases indefinitely with n. It follows that vq(:c,.gé Za) increases indefinitely
with n, and that (z},) is a Cauchy sequence. Sef&’ 7= it il WE shall see that
# is the inverse of & in By . Set u, = 1 for &l n; then zan = un for n large

enough, whence ¥ = i nZ = limahats = 1; but 1 is clearly the unit
element of &, , and we see that & is theifverse of £. Thus we have proved that
B, is a field.

Now, we shall extend the domaint of defipition of the funetion » from K to
E, . Let & be an element O’Qf R, ,and set T = KMy s , %o € B. Then the
sequence {x,.) does not com%r\ge to 0; by Lemma 1, yo{Ta) 18 c?nstant from a
certain value of » on, andthis constant value is not ». If (a::,) is any other
Canchy sequence such™hat limy .oz, = % we have lilu.ovs(Ts — z) = ®,
whence, from & certain value of 7 on, p,(xi. — ) > vo(®n), and therefore, vy(xs)
= 1(Tn — Tn +\%ﬁj = »y {,). We shall denote by »,(Z) the eonstant value as-
sumed for n laﬁ'g\e enough by »,(z.) when (z.) is a Cauchy sequence such that
lim, o, =8 Hz= 0, weseby, (&) = «.This definition does not lead to a contra-
dictionGn Ythe case where & = z ¢ K, because wemay then take z. =  for every n.

It follgws immediately from the definition that '

VF(:E + g) = miﬂ{v,(f), Vv(g)}:
w(Eg) = 1@ + »@

whenever Z and 7 are in B, . Moreover, We $¢¢ 25 in T, §3 that the first inequality
wmay be replaced by an equality if »(Z) # vy(@)- -

Denote by d the set of elements T € E,such that v, (T) 2 (. Then b IS (i]t?&r]y
a 1ing and 5 () R is the ring o of the place p. We have © 7 L , and, if 2 15 an
element of &, not in 5, then " is in 5, because pp(8 V) = —v,(Z). This means
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that 5 is & Vering in B, . The elements of 5 will be called the tnlegral elements
of By . The ideal § of non-unjts in B i the set of elements # of R, for which
»(Z) > 0; it is clear that H N R = p.

Let # = lim, .z, be an element of &y, (z,) being a Cuuchy sequence of ele-
ments of B. Considering the elements of R as elements of 7, , we shall see that
i,y (E — 2,) = . We havez ~ g, = Mgy (Xmgn — 20) and U
o =2 pt(Tops — Tmir-1), Whence »y(Zppn — Tm} Z Milicrgn pyle, e —
Tmir1). Since (z,) is a Cauchy sequence, (%1 — w,) increases indefinitely
with g. It follows that, given any integer If » there oxists an mg such that q = my
implies vy(zg4s — 2,) > M. Therefore the condition m Z Mo implies vp(2yyn — 2.)
> Mforalln > 0. It follows that (& — zm) > M for all m Z mp,which proves
our assertion. O\

From this, we can first conclude that, if g Cauchy sequéfice (x.) converges
to an element z of B (e, if p(x — T,) increases indefinitely with #), then we
havez = lim,_ 2, . In fact, set 7 = lim,_, 2, :then vp{B—) z) 2 min {y, (% — Zn),
(& — 2.)}. Bince »,(z — Ta) and vy(z — g,) both“Inerease indefinitely with
, we see that (2 — 2) = @, whence = 4.0 :

Next we see that, z being any element of, B, and a any integer, we can
always ﬁ_nd a0 = ¢ R such that y,(z — z) Z I we take indand ¢ > 0, then
- %(2) Z min {q, 7B} z 0. It follows ediately that the elements of 5 are

NS
o

Taking ¢ = 1, we see that every glement of 7 is congruent modulo § to some

somej;imes (although Improperly} be called the residue class of & modulo p.
. It is natural to say thg,t afequence (£,) of elements of 2, is a Cauchy sequence
It v{Fy, — In) inc dsey indefinitely with 7, and that (z,) converges to an
element F of B, if5%(2 — £,) incresses indefinitely with ». We shall see that

that »,(z, A~ &) Z n. We have T T = (Tt — Fap) - (Tayy — Za) +
(& — zWhence 1z, — 2,) = min {% »(Fa1 ~ 2,)}. This proves that
Po(@a43 5N ¥n) increases indefinitely with n, 1e., that (r,) is a Cauchy sequence of
elelpe;nts.of E. Setz = lim, . 2, , then & — Tn = (& —@,) +- (z, — a), and v, (F —
_ 533‘:% min {py(z — ), 7). We have seen that »(Z ~ =,) increases indefi-
(£ ~ &), which proves that the

A 4 ! : R, converges to the element %, we shall
ltjmte = luln,,_.ux,, - 1t is easily seen that the conditions T = limp,pfs, § =
Mnalls Imply £ + g = lim,o(z, o Jn)y Tulfn = i Tulf it =0
§o # Oforallm, g < i o1 Y Y (T, and it § £ 0,
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§2. Hensen's LEMMa

Let R, be the p-adic completion of a field B of algebraic functions of one
" variable, » heing a place of R. We denote by 0 the ring of integral elements
of Ry, by § the ideal of non-units of 5, and by = the field 9/p. If £¢ ©, we denote
by #* the residue class of & modulo . We shall consider polynomials f(X) n a
lotter X with coefficients in B, ; if f is such a polynomial, we denote by »{f)
the smallest of the values assumed by the order function », (extended to I2y)
on the set of coefficients of f. It is easy to see that, f and g being polynomials in
X with coefficients in R, , we have

v(f & ¢) = min{n(), g} nly) = v(f) + g} ~

Tf f is & polynomial with coefficients in 3, we denote by f* the polyng;:n\cﬁgl with
coefficients in T which is obtained from f by replacing its coefficients, By their
residue classes modulo §i; the mapping f— f* 8 a homomorphj'sg’l’; of 3lX] onto
ZIX]. "G

Leyma L (Hensgr’s Levma). Let f be @ polynomialaith coefficients in D.
Assume that * = @ # 0, where ¢ and ¥ are polymi@als with coefficients in 2
with no common factor. Then we may write f = gh, where'y and b are polynomials
with coefficients tn D which satisfy the following poﬁ}ite’ons: g = o B =, the
degree of g is equal lo the degree of . O :

We shall dencte by 8°% the degree of ayolynomial 8 = 0. We can find poly-
nomials gy, by with coefficients in 1% tch satisfy the following conditions:
g = o, B = ¢, 3%; = 3%, w(f =) = 1; for it is obviously possible to find
polynomials g , k; which satisfy,the three first conditions, and the last condition
is then =atisfed because f* =\Q¢z ‘Assume that, for some 1ntegt?r n > 0, we ha.\_re
already determined polynomials i, -*° 5 §=» By, v+ B With coeflicients in
9 which satisfy the following conditions:

a) gy =0, H3EW;

b) 8% = 8% 8% = 8% — 8% ;

¢) »(f — Qﬁ;) 2 n;

d) Vv(QI;d-z“;f“‘ 'gk) = volhesr — M) Z E l1=2k=sn— 1).
Let ¢ be W element of & such that () = 1. Then ¢ = £ = goba) 182 poly-
nomial with ecefficients in 5. Since ¢ and ¥ have no eocmmon f_actor,' it 1s well
known that there exist polynomials M(X) and p(X) Wi'th coefficients in Z sue.h
that t* = A\ -+ w}. The polynomials A and p are not uniquely dete_rmmed by this
condition: they can be replaced by A — x¢ and g + xe resPectively, Where x
is an arbitrary polynomial with coefficients in Z. We may dispose of this x so
as to make the degree of u smaller than the degree of ¢, {or, perhaps, jco makg
£ = 0). The polynomials » and g having been so selected, we dBtEI'I:IJIlB poly-
nomials I(X) and m(X) with coefficients in 5 such that ¥ = X, m" = p; We
may furthermore assume that m is either 0 or of degree < 9% and that lis
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cither 0 or of degree equal to that of A. We set Gr41 = Gn + "m, fpyy = B, 4-
t"0. Tt is elear that ¢F,, = @, by = o, i = %, volgun — gs) = n,
olbinis — Ba) Z n. We have f — Jnitfnts = (¢ — (lg, + mh,) — "tm). Since
§* = do + mp, we have (¢ — (gn + mha)) 2 1, whence »,(f — Gurthiapy) 2
% + 1. It remains to check that a° o = 8% — 8°¢nsa . Since 0%, < 3 —
8= , We have 8°¢ < °. On the other hard, the equality ¢ = f* shows that
Y = 3% — 8% < 8°f — °¢, whence (if u = 0} 3% = 0°f. It follows that
{if A = 0) 8N < %, whence 9°A = 9°f — % and 9% = 9°f — 9% = a°f —
9°¢s . Now we have i, = &, + &"l and &, and { are both of degrees < 9°f —
3% ; therefore, has1 18 of degree < 9°f — Fgx = 0 — 8% . )

Thus, our process can be continued indefinitely, and we obtain’ i SeQUenCes
{gn), (hy) of polynomials for which the conditions a), b), ¢), d)‘}u;e satisfied for
all a. ~\

Let ¢ and b be the respective degrees of f and . Them we may write g, =

im0 YinXE By = pIpm: 8;..X’, where v, , and 8;.n are‘elements of 5, and we
have »y(yini1 — vi) = 2 and ¥ldjnst — 814) 2 A, This means that the se-
quences (v;,.), (8;,) (for 1 < ¢ =£bh1=xi=4d ~’b) are Cauchy sequences.
Since R, is complete, these sequences converge t0rélements v, , §; which clearly
belong to 3. Set g = 370, 4,X°, 4 52008,X7 . Since w,(y; — v 21,
#(8; — 8;1) Z 1, we have g* = ¢ B* =¢>8ince b is the degree of ¢ and g is
of degree < b, the equality ¢* = ¢ implies 0°g = 3°%. We have f — gh = f —
gohn + gh — gah, . We see easily that v, (gh — gnhs) increases indefinitely with
#; on the other hand, we have »o(f-2nh,) 2 2. It follows that v,(f — gh) = o,
whence f = gh. Hensel’s lemmg}is thereby proved.

§3. ST;::(CTURE OF P-ADIC COMPLETIONS

Let R be a field of alg%'\l-}mjic funetions of one variable. We denote by p a place
of B, by B the p-adic_edmpletion of R, by % the residue field of », by K the
field of constants of ¥, by & the ring of integral elements of R, by p the ideal
_ .of non-units of g. We know that the field 5/p may be identified with =. If =’
is any subset .qi\z, we shall say that a subset 3 of B is a system of representatives

Jor 2" if ZNis4n 5 and is mapped in a one-to-one way onto £’ by the natural
homomg@h:sm of 5 onto = = 5/3.

N\® '
) T{{EOIREM 1, The‘nozazwn being as explained above, denote also by Z. the field
" ofelements of 3 which are separable over K. Then, Bhase subfield =, which con-

t_qe'n‘s K fmd which z’s.a System of representatives Jor the elements of Z,. The field
Zs 158 uniquely determined by these two conditions,

form f(Xz = 0, where f is & polynomial with coefficients in K. We have f&X) =
(X — a®g(X), where g 15 a polynomial with coefficients in =, . Since Z, I8

separable over K, wa have gla*) 0, which means that X — &* and g(X)
have no common factor of degree >0,
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We may consider f as a polynomial with coefficients in 5. Applying Hensel’s
lemmoa, we sec that f admits a factor of the first degree, say aX + b, with coeffi-
cients in 3 such that the residue classes of e and b module § sre 1 and —o*
regpectively. It follows that & = —b/a is integral and belongs to the residue
class o*. Since f(a) = 0, « is algebraic over K and every element of Ka) is
_a linear combination of 1, &+, o4 with coefficients in K (where d is the

degree of f). Since 1, a*, -+, (a*)"" are linearly independent over K, we see
that K{o) is a system of representatives for the elements of =, . Let conversely
! be any subfield B containing K which is a system of representatives for the
elements of =, . Let o/ be the element of ‘3" which belongs to the residue class
o*, Since =, = Kla*], it is clear that S = Klo'] = K{o’). The elemen{{f{e)
belongs to the residue class f(o*) = 0, whence fla”) = 0. Write, f&X) =
(aX + b)g(X), where § is a polynomial with coefficients in 5. Theh Wé have
(ae’ + B)gla’) = 0. But ga’) belongs to the residue class g(a®) which is #0,
whence §(e’) # 0 and therefore e’ + b = 0, whence a = o/and 5, = K{o).
Theorem 1 is thereby proved. R :

This being said, let # be any element =0 of B such that#,(z) > 0. Let there
be given a sequence (ci)rgi<x of elements of 3, starting with & term ¢, whose

index r may be negative, null, or positive. If we set > > n. eix’, the sequence

() is obviously a Cauchy sequence in B, Thelgnit of this sequence is repre-
sented by S, e;z’. An equality of the forrh S’ = 2 e o implies
. & = ¢ for every k 2 r. In fact, assume for® moment that this wiere not the case.
Then there would exist a least index, gaysm, for which ¢n # ¢, and we would

have
? :;ép\ - ! mk
o ((cm ~ G2Y 3> (ot = Cagn)a™ | = 0,
ol Fml
But we have v,((c. —c)z"™) = mw,(x), While

\f}(znl (C-:u+k - cm-l-k)xw'_-k) z (m+ 1)?,(:6),
O\

which prox;egf that the equality written above cannt?t tak.e place. .
Any ii'élileht of the form > jmr @ can also be written 1n the form 2 soms 6"
if s < r)Wby simply defining cx to be 0 it s <k < r. It s clear that

L]

- -]
i art — 2, ar = 3 (o0 — w2
Ky o .

fe=wr
wa L] = ’ z
f Y = g
(Eer) (B 4) = 2 (Ze 4)

This means that the elements of the form 3 er exr” form & -subﬁe.ld i)f R, iso-
ith coefficients in Zs .

morphic with the field of formal power series in & w1 ;
Consider now the special case where the residue field Z of pis sepazable over
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K (ie. Z = Z,). Let then ¥ be the subfield of & containing K which is a system
of representatives for the elements of Z. Select a uniformizing varizble z at h.
Then every element y of R can be represented in the form S i it We may of
course assume that y = 0. Set then r = »,(y). We shall define g sequence
{e)rgh<w Of elements of Z. To define ¢, , we observe that yz ™ « 5; ¢, will then
be the representative in 3 of the residue class of gz~ modulo p. It is then clear
that »)(y — c¢2) > r. Suppose that ¢, , -+ - , ¢, have already been defined and
that »,(y — Y., 2™ > n. Then TNy — D n, ) is integral and we
define cn4; to be the element of S which is congruent to My — Do )
modulo §. It is then clear that »(y — > 222 e:2®) > n + 1. The sequence {e;)
. being defined in this way, it is clear that we have y = Z?_, ckg;*. The formula
Y= D (ory = D0, cir® with s < r, o = 0 for (=2 < 7) is said
to represent the expansion of y in terms of « in the p-adic bginpletion of R.

ReEMARK. Even in the case where T is not separable over'X, it can be proved
that there always exists a subfield 5 of B which is a system of representatives
for the elements of =. We shall not prove this result here. Besides the fact that
the proof is rather difficult, the usefulness of the'esult is rather seriously im-
paired by the following circumstances: a) iahe{ﬁéld 3 is in general not unique;
b) it is not always possible to take for 3 sfield which contains the field of con-
stants K or R, as we shall prove by an example.

Let K be a field of characteristic .50 which is not perfect, and let @ be an
element of X which is not a pth powerin K. St B = K{z), where z is transcen-

dentsl over K. Then #*—g is iweducible in K[z]; this polynomial determines a
place p of K{z), and the residus field = of b 1s of the form K(2), where £ is such
that £ = a. We shall provethat ¢ is not & pth power in the p-adic completion
E of B. In faect, ass@e’for 4 moment that ¢ = 42 y ¢ B Then we
have (y — 2)° = @,—\e?, whence Py — ) = 1, which is not possible. It
follows immediatelyfrom this that no subfield of B containing K can be 2
system of repre\seﬁtatives for the elements of =, '

(¥t GENERALIZATION OF THE NoTION OF REPARTITION

Let }?}iﬁ a field of algebraic funetions of one variable, and let K be the field
of coastants of B. For each place b of B we have a p-adic completion &, of R.
Wehave defined a repartition of B o0 be & mapping ¢ which assigns to every
place 3 of R an element 1(p} of R in such s way that »,(x(b)) = 0 for almost
all places p. For techniea] reasons, it is converient to generalize this notion by
allowing each £{p) to lie in the p-adic compietion R, of B. We shall therefore,
from now on, call repartition a mapping t which assigns to every place p of B
an element ¢(p) of B, in such s way that »,((p)) = 0 for almost all p (v, being
now the extension to R, of the order function at p). The element g(p) is ealled
the p-component of the repartition r 3 We seb (1) = »,(x(p)).

The repartitions in the new sense stil] form a ring, in which the operations

are defined by: (¢ + y)(p) = z(p) + B(P), () = £(p)n(p). This ring con-
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tains the set of repartitions in the old sense as a subring. In particular, it con-
tains R as a subring, and it may be considered as a vector space over K.

Leta = 1L,»™® be a divisor. The notion of congruence (mod a} can be ex-
tended to our new repartitions: the repartitions 7 and y are said to be congruent
to each other {(mod o) if we have »,(r — ¥) 2 m(p) for every place b.

If 1 is any repartition in Our new sense and o any divisor, there always exists
o repartition ¥’ in the old sense such that ¢ = ¢’ {mod a). For, set 0 = ™.
For each place p we can find an element z(p) of R such that »,(z(p) — (1)) =
m{p). It follows that v,(z(p)) = min {r(x{p), m(p)}, whence »,(x(p)) = 0 for
almost all p's. This means that the mapping » — z(p} is a repartition ¢’ in the
old sense, and it is clear that £ = ¢’ (mod a). Q

Let a and o he divisors such that a’ divides a. Denote by ¥(a) and ¥(a) the
spaces of repartitions in the old sense which are =0 modulo a and dodido ¢
respectively, and by X*(a) and ¥*(a’) the spaces of repartitions in the'new sense
satisfying respectively the same conditions. If 1* ¢ X*(w'), then'wé can find a
repartition 1 in the old sense such that ¢ = ¢* (mod ). Sineé 6 divides ¢, 1t is
clear that ¢ e X¥(a’); this means that ¥*(a") = ¥(a) + &{w). By Noether’s
horaomorphism theorem, X*(a’)/%* () is isomorphic with E(0")/ (%(a") N &*(a)) =
%(@')/%(a). From this and from Lemma 1, IT, §4, We'\bo\nclude that ¥*(a’)/%*(0)
is of findle dimension equal to d(a) — d(a’) over B, Jield K. In other words, we
see that the result quoted just above remaings;.v‘aﬁd for repartitions in the new
sense. N :
Now, let « be a differential of the field E. ‘W shall see that @ may be extended
in a natural way to a linear function “oh the space of repartitions in the new
sense, If w = 0, we extend it of colicse by the null function. If not, let & be any
" repartition in the new sense. (o we can find a repartition ' in the old sense
such that r = 3 (mod (b(@N™); and, if ¥ and ' are repartitions in the old
sense satisfying this comdition, we have ¢ = 1" (wod (b(w))'l)', whence
w(t") = w(z”). We mag-therefore define () to be w(t'). The function , ex-
tended in this way(fo the space of repartitions in the new seise, is obviously
linez. Tt is clear(that Theorem 2, IT, §5 remains true if ¢ is taken to reprosent
& repartition in\the new sense. . >

.If p s place of R, we define (as we did in II, §7) the p-component «’ of a
differentiaMo by the formula '

(1) = o)

where ¥ is the repartition which assigns t(p) to P and 0 to every other place.
The function «® defined in this way is an extension t0 the space of repartitions in
the new sense of the p-component of w, a8 defined in 11, §7. On the other hand,
it may also be considered as a linear function on B,. Wesee immwlately that
Lemmas 1 and 2, I1, §7 remain true; in the statement of the second one of these

! “for every x € By .’

lemmas, we may even replace the words “for every & ¢ R’ by
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§5. RESIDUES OF A DIFFERENTIAL

Let E be a field of algebraic funetions of one variable, and let K be the field
of constants of B. We dencte by w a differential of E, by v a place of B, by 2
the residue field of p, by Z, the field of elements of £ which are separable over K,
by B the p-adic completion of B, and by S, the subfield of & containing K which
18 & system of representatives for the elements of 3, (Theorem 1, §3). The
p-component «* of @ may be considered as & function on B with values in K :
it induces a certain function on I, . If £ ¢ Z,, denote by & the representative
of £in Z,, and by ’(£) the element «*(E). Thus we attach to «° & function
on Z, with values in X. This function is obviously linear whensE, is regarded
as a vector space over K.

N
N

Lemma 1. Let K be a field and let L be an overfield of K ty’kz'ck 15 of finite degree
and separable over K. Then every linear function on L (cotvsadered as a vecior space
over K) can be represented in the Jorm £ — Sp;,;xgpl where p is a uniguely deler-

mined element of L. P\
If p € L, denote by A, the linear funetion delined by .(¢) = Sprzfo. Then

the mapping p — 3, is a linear mapping of & into the space L* of linear fune-
tions on L. Since L is separable over X, tHiere exists ay € L such that Spuxy # 0;
if p 5 0, then we have Alyo D) == 0, whence ), ¢ 0. This means that the map-
ping ¢ — ), is one-to-one. The spaces L and I* having the same dimension,
every element of I* can be written in one and only one way in the form A,
which proves Lemms 1, ‘f;'o

Returning to the notatigfhintroduced above, we see that there exists a uniquely
determined element » of\Z, such that o*(f) = 8pz,/xte for every ¢ e Z,. This
element is called ths\méfdue of the differential w at the place p, and is denoted
by resyw. '

It i3 clear that; the mapping o - resyw Is a linear mapping of the space of
differentials ,grgagarded a8 a vector space over K) into the field 3, . It follows
immediately'from the definition that we have

@ O W*(1) = Sps,x(res,w).

] eld of p is purely unseparable over K, we have
résw = w (1), .

TraroreM 2. Let w be a differential of the field B of algebraic functions of one
variable. If p 1s & place of B which is nof ¢ pole of w, then resyw = 0. If we know
of a place p that iis residue Jield 18 separable over the Jield of constanis of R, that
reswo = 0, and that »(w) 2= —1, then we may conclude that v i3 not a pole of w.

If pis 10t 2 pole of o, then we have «*(®) = 0 for every integral element =
of E and, in particular, for every element of 3, from which it follows that
rese =0. If resyw = 0, then we have o (8) = 0for every element E ¢ 5, . Now,
if 2 is separable over K, then every integral element of & is congruent modulo
~1, we have w"(y) = 0 for every y ¢ B such
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that »,{y) > 0, which means that &' (z) = (') whenever z and z' are inbegral
dlements of B which are congruent to each other modulo §. It follows that,
under the assumptions made in the second part of Theorem 2, we have o’ (z) = 0
for every integral element 2 of R, whence »y(w) 2 0.

Tt follows in particular from Theorem 2 that any given differential has only a
finite number of residues 0. :

TagoreM 3. Let w be a differential of a fild R of algebraic functions of one
pariable and lel K be the field of constants of B. For each place y of R, denote by
$,(v) the field of elements of the residue field of p which are separable over K. Then
we have Z,8ps, ik tesw = 0. _ ™\

Wehave 0 = w(l) = 2 w°(1), and Theorem 3 follows hnmediatglgfmha For-
mula (1) above. M . .

CoroLLaRY. If R is a field of algebraic funclions of one u wiable over an alge-
bradcally closed field of constants, then the sum of the residues of a differential of

R s 0. \
This follows immediately from Theorem 3. 0

Lenmma 2. Let py, -+ -, ps be a finite num&er“of distinel places of o fielld B of
algebraic functions of one varigble. For eachi (1 £1 = h) let there be given a linear -
mepping w: of the residue field Z; of pnto the field of constants K of B. Assume
that 3 21 pi(1) = O. Then there &Zusts @ differential « of R which satisfies the
following conditions: a) w 18 mitiple of (py -+ )" b) of an element of B
8 tntegral at p; , we have w""@})”; i), where £ 18 the value tafen by =; ot Py .

Let © be the space of @ifferentials which are =0 (mod (1 - ). Rzl
(which we assume)gthén no element #0 of R is multiple of -~ P, a;ﬂd
it follows froms {he” theorem of Riemann-Roch that $ is of dimension

L d(p) +. 4= 1, where g is the genus of R.MfweDand v.,‘.(x’,:) = 0, then
" (z;) depenl® only on the value £ taken by £ at pr ; for, if wylee — z:) > 0,
then worhdwb o™ (z; — ) = 0. Set o™ (2d) = Miw(E). Then Riy 15 3 finear func-
tion on B/ (regarded as a vector space OVer K). Denote by Z;i the sef of linear
functions on =;, and form the vector space HLi s*  product of the vector
spaces ¥ (1 < ¢ < k). If we assign to every @ € © the el_ement Alw) =
Miw, -, Apw) of this direct product, we obtain a linear ma{)pmg A of D mto

L ZF I e e D, we have 0 = «(1) = Bt (1) = 2imAes(l); thus A
maps D into the subspace P of =7 composed of the elemnents g, s Wb
such that 3%, (1) = 0. If ;e = 0, then we have w**(w;) = Ofor every Ts ¢ R
which is integral at b, i.e., p; is not & pole of . It follows 1mmed1.ately that t]:Ee
kernel of the mapping A is the space of differentials of the first kind of R. This
kernel is of dimension g, and A(D) is therefore of dimension

hadpy+e—1) —0= Sty d(p) — 1.
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But JT%-i 27 is of dimension >ha d(ps), and therefore P of dimension
%1 d(®») — 1. It follows that A(D) = P, which proves Lemma 1.

THEOREM 4. Lol 1o, -+ -, b be a findte number of distinct places of a field B
of algebraic functions of one variable. Let there be given for each 1 (1 < i < h)
an elemen p; belonging to the field 2;, of elements of the residue field of v; which are
separable over the field of constants K of R. Assume that > iy Sprogrei = 0.
Then there exists o differential w of R which is =0 (mod (py - -- p)™Y) such that
resyw = pi(l £ 4 = h). '

N\
For each ¢ we can construct a linear mapping u; of the residue field =; of p;

. into K which extends the mapping ¢; — Sps oozt of 2, into. Then we have

> #i{1) = 0. Let « be a differential which satisfies the ¢onditions of Lemma 1
relative o these linear functions 4, . If £; € =, . denpté, by z; an element, of B
which takes the value £; at y; and by Z; the elemerib,of ‘the p-adic completion
of B which belongs to the residue class £; modulo prand which is algebraic over K.
Then »,(£; — ;) > 0, whence, since »,(«w) = =1, o" (& — x,) = 0 and there-
fore Spz; ,/xéi(res,,0) = " (&) = o i) = Spz.,/x&ip: . This being
trie for every £; ¢ =, , , we have res,» =.; by Lemma 1.

A differential @ of a field of algebraigvunctions of one variable of character-
istic O is said to be of the second loipd it its residues are all equal to 0. It is clear
that any differential of the first Kind is also of the second kind.

Levuma 3. Let R be o fidld of 'algebme'c Tunctions of one variable of characteristic
0, and let ¢ = 1,p*™ be am integral divisor of R. Set a*(y) = max {0, a{p) —
1}. Then the differeptitls of the second kind of B which are =0 (mod a™) form a
vetor space over the field of constanis K of R, and the dimension of this space is
2t () d (0} $0/1where g is the genus of R.

AS

This i?.?b\%% if ais the unit divisor. Assume from now on that a is not
the unit divisor. Then no element 50 of R is =0 (mod a), and it follows from
the jllf;tearem of Riemann-Roch that the dimension of the space D of differentials
whieh'are =0 (mod o™ is d(a) + g —~ 1.Let py, --- , ps be the distinet places

for‘which a(p) = 0, and let Z; be the residue field of p; . If we assign to every

e D the ele:fnent (vesy, @, ++ -, Tesy, @) of the product JJ%, =, we obtain
& linear mapping P of D into 1T = 1t follows from Theorem 4 that P(D}
15 the space of elements (s, , -, p) of T]%; %4 such that 21 Spryx pi = 0;

this space is clearly of dimension e d(p;) ~ 1. The space of differentials of
t]lle seand kind which are multiples of " is the kernel of the mapping P; the
dimension of this space is therefore dfa) - g—1—- G, d(p;) — 1), and
this is easily scen to be equal to D_,a*(p) d(p) + g¢.



CHAPTER IV

EXTENSIONS OF FIELDS OF ALGEBRAIC FUNCTIONS
OF ONE VARIABLE '

§1. TIE RELATIVE DEGREE AND THE RAMIFICATION INDEX

We shall consider in this chapter pairs (&, S) of fields of algebraic functians of
one variable such that B is a subfield of 8. We shall always tacitly assume that
the field of constanis K of K 13 conia ‘ned in the field of constants L of \S‘dﬁd that
any element of B which s transcendental over K is also transcendendal over L.
This can also be expressed by saying that K = L ne. N

Let P be a place of S, and let © be the ring of the place P O contains R,
then we say that P is a variable place (with respeet to R),]f not, then we say
that P is a fized place (with respect to R). In the lagber case, the intersection
DN R = o is obviously a V-ring in B which cont{iné K ; it determines & place
p of B, of which we say that it les below P, onphat P lies above it. If S is alge-
braic over R, then every place of S is fixed “jith’respect to R. For, in this case,
every element of S is algebraic and therefdre also (since R is a field) infegral
over E; if B would be contained in £, phéﬁ ‘every element of 8 would be integral
over O, which is impossible since £ isuintegrally closed in S (cf. 1, §2). On the
contrary, if S is transcendental gver R (which can happen only if L is tran-
scendental over K), then it¢d "éasi]y seen that there always exist places of 8
which are variable with respéu to R.

Assume that the place-$pof S lies above the place p of B. The values faken by
the order function vy a8S% on the multiplicative group of elements 0 1n R form
a subgroup of the, sdditive group of integers, and this subgroup contains num-
bers 0. Tt follows that the subgroup in question consists of all multiples of
some integer €\> 0, which is uniquely determined by this condition. The num-
ber ¢ ig qajléﬂ’ the ramification index of P with respect to b {or with respcc_t to R};
if ¢ > 4, $hen we say that P is ramified with respect to R, if not that 1t 15 un-
ramified. If no place of S lying above p is ramified with respect t0 R, then we
say that p is unramified in S.

In the general case, it is clear that

pe(z) = eny(z) for every x # 0 in B.

On the other hand, since the intersection of $ with the ring o of the place p is 9,
we may identify the residue field Z, = p/p of p with & subfield of the residue
field 2 = O/ of P. If Zp is algebraic of finite degree over.Ep, then we =8y
’_“h&t [Z4:2,] is the relative degree of P with respect to p (or with respect to R);
if not, then we say that P is of infinite relative degree with respect to R.

51
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TreoREM 1. Let B and § be fields of algebraic functions of one variable such that
S contains R as a subfield. If p is a place of R, then there exists af least one place
of S which lies above v, and there exist only a finite number of such places, say
Pry o+, Bu. If 8 is of finite degree over R, the velative degrees di, -+, dnof
Be, -, Puare finite, and we have [S:R] = D 1.y die: , where e; 15 the ramification
index of P; with respect to R.

First we prove

Lemma L If p is @ place of R, there exists an element z of B which has p as
its only zero. . N\

Denote by g the genus of R and by d the degree of y. Then e have, by Rie-
mann’s theorem, I(p™ ") = d(y + 1) — g + 1 2 2, which\means that there
exists a non constant element y of B which is = 0 (mod ¥7°Y; the element
% =y then has p as its only zero. AR

Levma 2. Let K, L, and T be subfields of some ﬁeIéE,;assume that K s contained
wm L and T and that L i3 of finite degree over KLt (N, -+, An} be o base of
L over K; then every element of T(L) can be expressed as a linear combination of
Ay c ey A with coefficients in T, whenee [ZDyT) = [L:K].

Let U be the set of linear combinations of X y "+, A with coefficients in 7.
1t is clear that the products A (1 &%, 7 2 m) belong to {7 and therefore that
Uisaring. Wehave L C U, Wl}eﬁéé leU,and T C U. If u, is an element 50
in U, the mapping % — wu of L into itself is linear {when U is considered as
8 vector space over T) and does not map any % ¥ 0 upon 0. Since U is of finite
* dimension over T, our mapping maps U onto itself; since 1 « U, wehave ul" ¢ U,
and U is a field. SinceX contains 7 and L, we have U = T{L).

Lemma 3, Let L\Bg' an overfield of a field K, and let 1 be an element of an over-
Jield of L which(is transcendental over L. In order for L{x} to be of finite degree
over K{(z), it.§8 mecessary and sufficient that L be of finite degree over K; if this
condition Q(&a'tisﬁed, we have [L{z): R{z)] = [L:K].

;f L8 of finite degree over K, then it follows from Lemma 2 that Liz) is of
?mge,}iegree over K{(z) and that [L(z): K(z)) = (L:K]. Now, assume that L{z}
is of finite degree over K(z). Let ) » *** 5 Am be elements of L which are linearly
independent over K ; then they are also linearly independent over K{z). In
fact, assume that > 7 Ay, = 0, 7: ¢ K(z). We can find a g # 0 in K[z] such
that the elements p; = gl =75 m)arein K [z]. Writing that the coefficients
of t}}e polynomial 3 7%, Ap; are all zZero, and remembering that A, - - , Aw
are linearly independent over K, we see immediately that pi=0{12¢=m),
which proves our assertion. Tt follows that [L:K] is finite and at most equal to
[Z4z): K(z)]. Lemma 3 is thereby proved.

We can now prove Theorem 1. We denote by K and L the fields of constants
of Rand § respectively, and we take an element z ¢ R which has p as its only
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sero. Then z, which is in R and transcendental over K, is not in L, which proves
that = has at least one zero P in 8. If © is the ring of P, then © does not con-
‘tain 27" it follows that © {1 R is the ring of a place of B which contains z.
This place must be y, and P lies above p. Conversely, any place of S which
lies shove b is a zero of x, which proves that there are only a finite number of
such places, Assume now that S is of finite degree over R. Since § is of finite
degree over L{z) and R over K(x), it follows easily that L{x) is of finite degree
over K{z), and therefore that L is of finite degree over K and that [L{z}: K{z}] =
[L:K). If @ = »,(z), the divisor of zeros of zin 8 is P§* - -+ Pi™. Making use
of Theorem 4, I, §8, we have [S:L{z}] = 3 %1 aedDi/ Bi: L], where O, is the
rng of PBi. Since [Kx):K{x) = I[L:K], it follows that [S:K{z)] r=
63 L eC i/ Bi: K. Since O/ P; is of finite degree over K, it is also of finite
degree f; over o/p, and we have [8:R|[B:K(z)] = alo/ p KD i eif ..{\.iaphfing
the theorem quoted above to R instead of 8, we obtain [R:K{z)] =alo/p:K].
Theorem 1 is thereby proved. O ON

Lesots 4. Let B, S, and T be fields of algebraic functions of owe variable; assume
thai B is o subfield of S and S of T. Let B be a place of T which"s fixed with respect
io R; then B is fized with respect to S. If p s the placeyof'S which lies below B,
v is fived with respect lo R and the ramification indesof P with respect to B 1s the
product of its ramification index with respect o 8" By the ramification indez of p
with respect to R. Ij T is of finite degree over Ry the relative degree of P with respect
fo R s the product of its relative degree with tespect 1o S by the relative degree of p
with respect o R. N :

It is obvious that B is fixed with{espect to S and that p is fixed Wi.th res:pfact
to R. Let g be the place of Rewhich lies below $, and let = be a uniformizing
variable at q in B. Then & %= _»i(z) is the ramification degree of p with respect
to R, while the ramification-index of % with respect to R is w(z) = enl®),
where ¢ is the ramification index of B with respect to S. Let 2(q), =(p), and
(%) be the residue-fields of g, p, and B respectively. Then we have Z(a) &

3()  Z(%), andyit T is of finite degree over B, we may write [=(B):2(@)] =

[Z(B): Z(p)][2(p)sE(0)]. Lemma 4 is thereby proved.

S
CY"§2. THE CcASE OF NORMAL ALGEBRAIC EXTENSIONS

Let R and S be fields of algebraic functions of one variable such th?,t 8 con-
tains R as a subfield, If ¢ is an isomorphism of § with o field ' which maps
every element of R upon itself, S’ may be considered as a field of algebraic func-
tions of one variable, whose field of constanis is the image umit?r ¢ of the ﬁelfi
of constants of S. It is elear that, if B is a place of S, then cPisa pls{;ce of &,
and that o defines an isomorphism of the residue field of P with t'he residue ﬁel.d
of ¢, and also an isomorphism of the P-adic completion of 8 with the cr'fﬁ-adlc
eompletion of . If « is an element of S, we have veu(ow) = re(@) If § is fixed
with respect to R, the same is true of &%, and oP lies above the same place of
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'R as P; the ramification index of «B with respect to E is the same as that of
P. If Sis of finite degree over R, then the relative degree of &% with respect
to R is equal to that of R, '

When places P and ¢ lie in the relation described above, then we say that
o is conjugate o P with respect to R. In particular, the places of the field S
itself which are conjugate to P are those deduced from P by the automorphisms
of § which leave the elements of E fixed,

TaEOREM 2. Let B and S be fields of algebraic functions of one variable such that
S contains R as a subfield and is algebraic and normal over R. Then the places of
S which lie above a given place p of R are all conjugate to cach othek, ™

Let %., ---, B4 be these places. Then we can find anéelebent z of S such
that vy, (z) > 0, vg,(2) = 0 for ¢ > 1 (Theorem 3, I, §6). Let S bo the field
generated by adjunction to B of 2 and of its conjugatésiwith respect to ) then
&' is algebraie, normal, and of finite degree over 1\8“ Bet o1, -+, o be the dis-
tinet automorphisms of ' over R; then it is- Well'known that each o can be
extended to an automorphism o;, of S. On the'other hand, we know that the
relative norm Ngz2 of 2 from S to R can bé‘%ritten inthe formz = [, (o)
where g is some exponent >0. We have vog,(0:2) > 0, but wylowz) = 0
if B; # 6P . This shows that ml(crgzj)' 2 0 for all &'s; since 2 is one of the ele-
ments o3z, we have vy (z) > 0, whence v,(2} > 0 and vy, (z) > Ofor 1 < i < A.

From this and from what we hawe seen above, it follows immediately that each

; must oceur among the plades 0,PB; . Theorem 2 is thereby proved.

LN 83, INTEGRAL BASES

Let B and Sbe fields of alpebraic functions of one variable, of which we assume
that S contains £as a subfield and is of finite degree over R. Let p be a place
of R, and let- By - | B, be the places of .S which lie above p. We shall consider
the. following\sings: 1) o, the ring of the place p; 2) 1, the ring of elements of B
which %;nht have any pole outside {p}; 3) ©, the intersection of the rings of
the pliees By, -+ -, Pu ; O is therefore the ring of elements of S which do not
has_(q;any of the places B, --+, B, as a pole; 4) R, the ring of elements of 8

,.\:v},}mh do not have any pole outside the set (B, -+, Pa). Ttisclear that o N
18 the field of constants of £, while © N 9 is the field of constants of S. Moreover,
wehave ONE =pand R N R = ¢

Let {yl,’ “**y Ua) be a base of 8 with respect to K. Then any y ¢ S can be
e_xpressed in the form Y7, %Y, % € . We propose to investigate the proper-
ties of the coefficients 1, » **° , Tn when g is assumed to belong to either % or ©-

L]}?;MM& L. There exists an element u # 0 in R, which depends only on p and
0?1:_the base {y,, "ty Yal, which has the following property: if y = iy zakh
(withw: e R, 1 5 i g n) s any element of R, then uz; ¢ © (1 =4 = mn),

] Lgt Kand L l?e the ﬁs?lds of constants of R and S respectively, and let z be an
element of B which admits b asits only zero (Lemma 1, §1). Then it follows-from
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Lemma 3, I, §8 that there exists a finite subset {w:, -+, wx} of B such that
% = S, Llz 'w. . Since S is of finite degree over B, L(x) is of finite degree
over K(z) and L is of finite degree over K (Lemnma 3, §1). If {M, ---, A} is
a base of L over K, cvery element of L[z "] can be expressed as a linear combina-
tionof M , - -+ , A with coefficients in K[27"], whence R = 3 Y Kl v
Sot Aap, = Dor1 Grdi, Gi € B, and let @, -+, g be all places of B which

~ are poles of at least one of the coefficients ¢, . Set mp = min, , e (Gn:); the
degree of the divisor p"]I;=: ¢i* increasing indefinitely with m, it follows from
Riemann’s thcorem that, for m large enough, there exists an element u > 0
of B which is =0 (mod v "] [iu & ™). We then have ut,: e t (1 = 7 < i,
1£» = N,1 217 = n);since Kiz™ C t, it follows immediately that&ihhas
the property required in Lemma 1. o \

Leaia 2. There cxists an element ¢ #= 0 in B, which depends dnly on p and
on the base {y, ', Ya}, which has the following prowérty: o y =
Stz (v e B, 1 £ 41 £ n) is any element of O, then vz; €0 (=i Zn).

Let v* be a place of R different from p; let t* and %t Be the rings constructed
with respect to p* in the same way as v and R have beemconstructed with respect
to p. Let ¥ be an element of £; we shall prove therégistence of a unit £ in o such
that &y ¢ W*. Let Oy, -+, Oy be those poleg,of 3 which lie above places of B
distinet from p* (if any), and let g, be the,plate of E below Q, . We can find
for each p an integer m, = 0 such that ’thé: tonditions £ ¢ R, v, (£) Z My imply
vo,fy) = 0. Let u be an integqxf.”ﬁ{}; #f ¢ is an element of B which
is = 0 (mod p**][ou o), then it sclear that &y « g+, Now, we shall take u
to be so large that d(v*] ;=i q}{’) > 2g — 2 + d(p), where g is the genus of B.
Then the dimension I, of the\space E of elements of B which are E}O {mod
T a™) is d™[Ba ™ — ¢+ L while the dimension I, of the
space ' of elements ofsf-which are =0 (mod o Lo a37) 8 B — 4(p).
Tt follows that = then(Codtains an element £ not coptained in E'. We have &y ¢ B¥;
on the other hand.,;sﬁée y ¢ O, the places g, are =P, and, since £ ¢ ', we have
() = 0, and£dya unit in o, _

Now we detérmine an element w* # 0 of B which satisfies with respect to p*
{and t-O,‘ghé%’aée fg1, ** -, Ya)) the same condition as the element w of L.emma 1 |
with 18spect to p. I gy = 2 fm1 Xiffs € (withz; e B, 1 = i = n), .thl’?]l we have
Bz e v (1 < 1 £ n), and, a fortiort, fu*x; € 0. Since £ i3 & unit In o, We see
that v = w* satisfes the condition of Lemma 2. : )

Moreover, we see that, the base {y1, ==~ > y.} and the place p* l:JFemg kept
fixed, the element » may be taken the same for all places p # p:“. Now, there
are only a finite number of places p of B which fail to sat'lsfy simultaneously
all the following conditions: 1) p # »%; 2) voly) 201 £1=m) for all pIace)s
B of S which lie above p; 3) vy(w*) = 0. Let us say that the base {#1, < =* s Ya)
1s an integral base at the place p if the following conditions are sa:t-lsﬁ(?d: 1) each
¥: belongs to the intersection O of the rings of the places of 8 Whlch lie above p;
)iy = Doy (o eR 1 21 = n) is any element of &, then @y, * -+, T
belong to the ring of the place p. Then we see that we have proved
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A

Lemma 3. Any base of S with respect to R is an tniegral base at almost all places
of R. : '

Now we prove

‘TaroreM 3. Let R and S be fields of algebraic functions of onc variable such that
S is an overfield of finite degree of R. If v is any place of R, then there exisis a
base of S with respect to B which is inlegral at p.

Denote by o the ring of p, by © the intersection of the rings of the places of 8

whick lie above p, and by {g1, -+, yn! any base of S with respectto £.If 1 £
) g’ n, let M, be the set of elements of © which are Iinear.Qombina.tions
of 41, -, yn with coefficients in R. If y e Moy set y = S0 um,

wieR(1 <4< m); then it follows immediately from Lemma 2 $hat the numbers
r‘,(u,':,) for all y ¢ M. have a finite lower bound. If ¢ is any elément of R such that
7{t) > 0, then #y,, ¢ M for 1 large enough, which shows that there exist ele-
ments y e M, for which u,, > 0. Let — g be the smallest of the numbers v, (1)
for all y ¢ Mo, and let y,, = o Uim Yl begah”element of M, such that

be(u;s,m) = —u . Since 4, > 0, it is clear thabthe elements Y1, , Yo fOTmM
a base of 8 with respect to R. Since y e M, 11, - -+, ya belong to £, and
the same is true of the linear combinations of 7 , - - - , ¥, with coefficients in o.

Let conversely y = > &, ugy, be any,element of ), with w, e R (1 < ¢ < n).
We shall see that us e 0 (1 = 4 < 2)..Tn fact, assume for a moment that «; € 0
for 1 > m, but that u, ¢ o. Set, Y=y — Dismuys ; then ¥’ belongs to O,
and therefore also to M, , since§i, - - - , y.» are linear combinations of Py lm
with’ coefficients in B. If we sethy’ = Dt ulys , we have ul, — Undliy, m , WheDCE
vy(Um) = —¢m + ?3(tm) &\ =g , which is impossible. Theorem 3 is thereby
proved. (9

Let {sn, -+, ya} be's base of S with respect to It which is integral at a place

pof B. Let © be the¥intersection of the rings of the places of S which lie above v,

and let y be apy‘element of ©. Since Yy ¢ D, we have yy; = D heyaiy;, Where
the e]e;ne;:g’ggfaéi belong to the ring o of p. The characteristic polynomial F(X)
of y withwespect to R is the determinant of the matrix XE — (as;), where E

is the ¥ matrix of degree n; the coefficients of F(X) belong therefore to o.

In: Rﬁrﬁcu}% we see that the frace and the norm of y, taken from S to R, belong
‘tore, and that y is integral with respect to p. Conversely, any element of S
which is integral with respect to o belongs to O, as follows from the fact that
the ring of any place is integrally closed (1, §2). Thus we have proved

Lemms 4. Let 9 be a place of a field R of algebraic functions of one variable, and
let S be an overfield of R which 1s of fintte degree over B. Then the ring ©, inter-
sectton of the rings of the places of S which Lie above D, 18 also the ring of elements
of S which are integral wver the ring o of p. If ¥ € 2, the coefficients of the char-
octeristic polynomial of y with respect to R belong to ».

Now we prove
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Lesais 5. Let the nolation be as in Lemma 4, and leb {3, -+, Ya} De o base
of S with respret to 12 which s integral at n. Let B be a place of S which lies above p,
and let y¥ be the resilue class of y: modulo B (L £ ¢ £ n). Then every element of
the residuc ficld of B can be wriilen as o linear combination of y’f s T yﬁ with
soeflicients tn the residue field of .

Let * be an clement of the residue field of P, and let 7 be an element of S
belonging to the class n*, Let Py = P, Bz, - - , Br be all the distinct places of 8
lying above b, Making use of Theorem 3, I, §6, we see that there exists an 4 ¢ S
suchthat valg — 1) > O, mem) 202 542 k). Then 7 belongs to £, whence
g= gamay:witharieo(l = i < n). If 27 is the value taken by «: at b, we
have 7% = 2 =1 eI A

§4. JXRONECKER PRODUCTS OF COMMUTATIVE ALGEBRAS (),

Let ¢ and M be commutative algebras (of finite or infinite dimengions) over
a ficld K. We shall associate with  and I a commutative algeb]gapﬁ @ M over -
K which will have the following properties: ‘ 4D

1) 10 every pair {z, y) formed of an x e gand ay ¢ Pt there 1s associated an
clement xy ¢ £ ® M, and we have (z + &)y = oY + x'qu{?(y Yy) =y + 2y,
@y = @) (y), (ex)y = x(ay) = a(ey) (where'r, o’ are any elements
of &, 4,9 are any elements of P, and « is any element of K);

2) every element of € @ %t can be written a3 % finite sum of elements of the
formzy, x e @, y e M,

3)if 21, -+, ¥ are elements of € which ‘are linearly independent over K,
and 4, -+ - , ya clements of M which arelinearly independent over K, then the
elements 7y, (1 £ 1€ m, 1 27 <"n) are linearly independent over K.

To prove that there exists anxﬁﬁebra with. these properties, we select hases
(8a)aes and (n9)s.s of ® and E}J?\e\siiectively {4 and B being sets of indices which
may be finite or infinite). Wedintroduce a set of symbols {8 indexed by means
of the pairs (a, 8) € 4 X8, and we form the vector space of all formfjll linear
combinations Ea,saaggé“of these symbols with coefficients day € K (it being
understood that, 'h\:af{y such linear combination, there are only a finite number

of pairs (a, 8) fon Which agg 7% 0). I & = ZaesCeka € gand y = Zpadpms ¢ B,
- we define xy<fo be Zascadsios ; then the conditions stated under 1) and 2)

are satisfiod,"except the condition (x2)(u¥) = (y)(&'y'), which involves the

multiplicatfon in € ® I, which has not been defined yet. Let us now check
., T 8s linear combinations of &

that 3) is satisfied. We can express 21, *° ey

finite number of the £4’s, say of £a, ** " 7 £, . We bave p = an_d, by adjoin-
g tom, .-+, xm p — m suitably selected “lements £a; , We obtain p elements
i, -+, z, which span the same subspace of € a8 Eays " s Eope Similarly,
We can adjoin to Y, 'y Yn B certaln number of elements Huyrs """ yq' of
the base (ns)sep sueh that 3, -+ , Yo form & base of a subspace of m which
has algo a base composed of ¢ elements 7g,, =7 » of the base (1)ses - The
dlements z; (1 < { < p, | S j S ¢) are linear combinations of the eletnents

"
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Sop; (L2912 p, 1 S5 2 ¢ and conversely, from which it follows thag these
elements are linearly independent over X,

To define a bilinear multiplication in our vector space, it is sullicient to defige
the products of the basic elements {ap . We set {oplars = (Bafur) (mamss); it is
€asy to see that the multiplication defined in this way is associative and co.
mutative, and that it defines & structure of algebra on onur vector space. The
formula (z2)(yy') = (@y)(z'y") holds whenever z and &' are umong the £a's
and y and ¢’ among the 76'8; by making use of the Imearity, it is casy to check
that our formula js generally valid,

Thus we have proved the existence of an algebra 8 ® M with.the required
properties. Furthermore, the structure of § @ M is uniquely defeimined by the
conditions 1), 2), and 3), In fact, using the bases (£,),.. aldM)ses , it follows
from 1) and 2) that every element of § ® M is a linedr combination of the
products £,n; ; making use of 3), we see that these Products form a base of
e M In virtue of 1); we see that (Ea’?ﬁ) (Ed”?ﬁ') k¢ j(fasa’)(ﬂ.iﬂsf)) which shows
that the multiplication in ¢ ® I is uniquely detefinined.

The algebra £ @ M is called the Kroneckeniproduct of € and O, It is clear
that, i & and 9% are subalgebras of & andyi respectively, then & ® IV is
a sttbalgebra of 2 ® 9. "

Fron3 ROW on, we shall assume that'R and M have unit elements 1¢ and lm
respectively. Then it is clear that 1alip-s the unit element, of @ ® M. Moreover
the elt_aments Zlm (z € ®) form a.éiibalgebra o 2 @ M isomorphic with €; we
shall identify this subalgebra g¥ith € itsel. Similarly, we shall treat 9 as a
subalgebra of ¢ @ m. i

'8 = Lisa field, the(the fact, that L is a subalgebra of I ® 9! (and that
the unit element of 45.4l50 the unit element of I ® M) shows that we may
constder the elemenps\ L® Mas forming an algebra over L. This algebra will
be denoted by Taydnd we shall say that it is the algebra deduced from 9% by

extending the bugic field from K 1 7, o : '
i \ - Any base s of M with respect to
- salsoa base.bf'sm,. with respect to 7. For i (?a)ﬁ y y

"

flﬁ Can L8 Written ag 5 linear ecomhin

Zpentgny = 0, the z4’s being elements of L
418 a base of L with respect to K,
1) _ aeaCasla , €as € K, and we have 2 aslastate = 0,

W}}?nz? .Ca,a = 0 for all a’s and .B’S, and therefore 25 = 0 for every B,
immed; L: ? S?bﬁe}d of L containing X, g, 3 an algebra over L', and it follows
lately from whag Was said above that m, = (M), is the algebra deduced

fr%rn E?fﬁ by extarltding_ the basic field from, 7, to L.
ﬁeldse ItaJ;lbe Mainly interested in the case where ¥ = Land M = M are both

'we;may write each %5 in the form =

© consider the operations of additi iplication as per-

formed 3 ! ' addition and multiplication as p
Tmedin L @ M op In g, Wht.anfwer confusiong aye possible, we shall endeavour
Gation by 81Ving supplementary indications in the context.
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Levma 1. Let I and M be overfields of a field K. Assume that we are given 1s0-
morphisms \ and u of L and M respectively with subfields of an overfield Q of K,
and that each of A and u maps every element of K upon itself. Then there exisis @
homomorphism. ¢ of L @ M inio Q which coincides with X on L and with p on M;
oL ® M) is the subring of @ generated by L) and p(M). :

Let (Eadaca and (5s)ses be bases of L and M respectively with respect io K.
Then the products £.us form a base of L ® M. We can define a linear mapping
¢ of L ® M into Q which assigns fo £.ns the element MEq)u(nz) of 2. We may
assume that the unit element of L is one of the elements £, , say £, , and that
the unit element of M is one of the elements 55, say ns, . Since £, = Zdon, ,
ns = Eayms, We see that ¢ coincides with A on L and with g on M. Itdollows
immediately from our definition of the multiplication in L & M tl\l'é‘h P is a
homomorphism of the structure of algebra of L ® M into that of @NThe image
oI, ® M) is thercfore a subring of ©; it is obviously the ring generated by
ML) and (M. R4

§5. EXTENSION OF THE P-ADIC COMEITION

Let R and S be fields of algebraic functions of op%v\ariable such that 8 Is an
overfield of B (with the usual assumptions on the'fields of constants; cf. §1).
Denote by p a place of B and by B a placcoof‘S’which lies above p. Let B be
the p-adic completion of B and 3 the %.adic’ completion of S. If an element
@ ¢ B is the limit of & sequence () of glements of &, then the sequence (),
considered as a sequence of elements off S, converges to an element of 3. For,
if ¢ is the ramification index of P with respect to E, the number rg(tsir — Un} =
evy(tinss — Un) increases indefimitely with n. Moreover, if @ is’ the limit of an-
other sequence (u,} of elements'of R, then yaltin — ) = enp(Un — Tfn) increases
indefinitely with #, whichy proves that the sequences (un) and (u,) have the
same limit in §. If we @3sign this limit to @, we obtain’ a.mapping of & into 8
which maps every ele:m}eﬁt of R upon itself. We see immediately that this map-
ping is a ring hoﬁ:’orhorphism. Since B is a field, our mapping is actually an
isomorphism. We shall often identify R with its image under the isomorphism
which we have just defined ; i.e. we shall treat & as a subfield of 8.

From oW ‘on, we shall assume that Sis of finite degree over R. We shall denote
by B, - - , Pu the distinct places of 8 which lie above b, and b_y &, the Br-adic
completion of § (1 £ A £ k). We construct the product 1 S 3 this is an al-
gebra over R whose elenents are the h-uples {1, -+ yn withprhe (L =M= k)
and in which the operations are defined by the formulas

(o, - o) + G, o) = at o, ;U T ),
(yl’ e ,yh)(zl, b ;zh) = (ylzl.: e ,y}':zh),
x(yl, e ;yf‘) = (xyl, e :-’Uyh)

(where gy, ,zn e 8, 1 £ A < h,and = ¢ ).
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TraroREM 4. Let B and S be fields of algebraic functions of one variable such that
S is an overfield of findte degree of B. Let p be a place of R, R the p-adic completion
of B, and B, -+, Bu the distinct places of S which le above p. Then the product
of the Pr-adic completions of 8 {1 £ X = h) 4s an algebra over B which s isomorphie
with the algebra Sg deduced from S (considered as an algebra over E) by extending
the basic field from R to B.

We shall construct a homomorphism & of Sz into I 8 and 2 mapping
¥ of J[3-1 5 into Sz, and we shall prove that % is the identity mapping of
1T} 8 into itself, while W& is the identity mapping of Sg into itself.

Each S, contains the fields S and R; it follows from Lemma 1, §4 that there
exists a homomorphism &, of Sz into S which maps every element of cither 8
or B upon itself. If we set ®(u) = (@:(u), - -+, Balw)) (for 1€ )8x), we clearly
obtain a homomorphism & of Sg into H:_l S, . O

Let (31, -+, u) be any element of LS. Im islany integer > 0, we
can find for each A (1 £ A < ) an element Ymn € S sqch?thzit

Vée:\(?h - y;s.l\) z menl)

{where e, is the I"a.mjﬁgat-ion index of P, with redpeet to K). By Theorem 3, I, §6,
we can find & yr, ¢ S such that vg, (y), — y;;b)g me (1 £ X £ h). Tt follows
that N\

1) w;(ya,.t’fié:;) = me 1 =2x=h,

whence .

(2 iz — Ym) Z mex (1 =Xx=h.

- . N
1\0‘?_? el &bﬁ% {ei, «++ |, 2.} of Swith respect to R which we assume
to be integral at p. Lgt\s € & uniformizing variable at y in R. Write

‘0 3 ’ n
’\\ Ym = ;lﬂ?fm%, Tim € B;
. N —
it follows\,@;)m (2) that ve, (™ (Ymir — wh) = 0, whence, since the base
't:'. {zl, ‘e )zn}

7'\
is\in‘tégral at P, (" (e ma1 ~ Tim)) = 0 and therefore vy(; miy — zim) = M.
We conclude that each of the sequences (Tim)igmcw converges to an z; in K.
Morgovm_‘, these elementg z; do not depend on the way in which we zelect the ap-
prgxa_matmg elements y,, , provided the conditions (2) are satisfied. For, if
(3=} is another sequence of elements of S such that v, (g — ym) = me, (1 £
A = k), then we have (Y — n) = mey, and, if we set yh = X 1oy xiwti,
then the same argument as above shows that y,(z¥, — ) = m, whence
M, ~w2*in = ;. Thus we can define mapping ¥ of i S\ into Sg by the
fOI'D’l‘llI& 11;(?;1 y Rty yr‘a) = Z?—l Xz

The image of an element 2 hiea: of Sg(x:e R, 1 £ 4 £ n) by the homo-



EXTEXSION OF THE p-ADIC COMPLETION 61

" morphism &, of Sg into S, is the element of Sy which is represented by the same
expression > 7= %.2:, but in which the operations of addition and multiplication
are now assumed to be performed in S, .

Sinee vay(#; — Tem) = Mér, vy (2) Z 0, we have v, @nT(yr, -+, ¥) — Yu) T
mex . Comparing with (1), we see that &:¥(y1, - -+ , #) = g (1 £ X = k), which
means that the mapping ¥ is the identity mapping of T13< S, onto itself.

Let z;, - - - , Z, be any elements of B. For each integer m > 0, let

Timy =7 5 Tnm

be elements of B such that vy{(x; — Zim) 2 m (1 £ ¢ < n), and set
i '\
Y = D, Timki - \
= oA
Then, for each A, we have vg, (Y2 — Yw) = men , which shows that the sequence
(yr) converges in & to some ¥ , and that 4 = D =1 z:2: , the Operations being
performed in 8. If u = i z2: (operations performed ip' %), then &(u) =
@y, -+, y), and ¥B(u) = u. This proves that W& is $h€ identity mapping of
8z onto itself. _ _ O,

It follows that @ is a one to one mapping of Sg on{o> 5= 8. . Since we know
already that @ is a homomorphism, we see thajsaiﬁs actually an isomorphism.
Theorem 4 is thereby proved. O _

Remarx. Call integral an element (y1,.%%5 ) of HL; S, when, for each
M g is integral in & . Using the notation'F the proof of Theorem 4, we see that
the elements y:n of 8 are then integralgt each place P ; the coefficients % are
therefore integral at p, and so aré their limits ;. Thus we sce that the iso-
morphism which we have esmbligﬁeﬁ‘ between Sz and | [oma Sk has the property ??mt
the integral elements of | [ow Savare those which corvespond to the linear combina-
tions of the elements of @ bdsdof S with respect to R which is infegral at with co-
efficients which are integrglin B. o :

It follows in partiéilat from Theorem 4 that each S is of finite ('fiegr.ee ), OVET
R, and that Zi’é\%= n = [S:E]. Let & and /i be the ramification index and
the relative degkde of $ with respect to R. Then we know (Theorem 1, §1) that
Yhaah =\ We shall prove that m js in fact equal to ef . ‘

THEOREAL 5. Let B and S be fields of algebraic functions of one variable; assume
that 8 s an overfield of finite degree of . Denoteby v a Place af R,’ by Ba plftqe of 8
which lies above v, by R the y-adic comypletion of B, by 8 the_"B-adw comple%tzon af S,
bye and § respectively the ramification index and the relative fjggme of P with respect
to R, by =(p) and =(P) the residue fields of p and B respectively. Let v, + -+, t:f__be
inlegral elements of 8 whose residuc classes modulo B form a base of Z(P) with
respect (o Z(p), and let u be an clement of 8 such that vg(ue) = 1. Then the of eieme??,ts
wo, (0 i<e—1 1% <) jorm abaseof S with respect to K, and evory i
tegral element of § can be written in the form S a0 2w vy with coefficients

:; which are tntegral elements of E.
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We shall prove that, if the z;;’s are elements of E such that

e—=l f X
W(E > ngu‘v,-) Z em,

=0 j=1

smallest of the numbers »,(); we may assume that my = vyl ;) and that
mxy) > mpif i <4y, 1 €5 = f. Let £ be a uniformizing variable at 9 in
E. Then the elements {™a;,; (I £ j < f) are integral in B. Let £ be the
residue class of 7™z, ; modulo p; since the residue classes o) ey vpofey, oo,
v form a base of Z(P) with respect to Z(p), and £, ¥ 0, we have Zinl gpr 0,
whence (D ™z, ;) = 0 and

where m is an integer = 0, then »(z:;) 2 m for all ¢ and 7. Let myp be the

o

(3) _ v (; xgn,‘u“ v,-) = 1y -+ mye ‘\ N\
If i < 4y, we have w.fh}"

(4)  ow(@in'n) = i+ en(en) Z 6+ e(mg +\15 > g -+ me
because f + ¢ = e > 4, If § > z'o,wehave{\\;

(5) w(Eiie) = i mn%\> 1 + mpe.

Comparing (3), (4), and (5}, we obtaip‘y:q;(Zf;E D ') = 4+ me = me.

Since 4 < ¢, it follows that m, = N

In particalar, if ) so8 >4 mgj%'fjf =0, wemust havez;; =0 (0 £ <e— 1,
L 57 = f). This proves that the'ef elements u'; are linearly independent over
B, whence [S:B] 2 of. Nowlet B, = B, --- , Bs be all the distinct places of S
which lie above p, and 1€0yé, and f, be respectively the ramification index and
the relative degree of Y&}xﬁth respect to R. If §, is the Bh-adic completion of S,
we have just proved that [Sy:E] = eyfi . On the other band, we know from Theo-
rem 4 that ZL.; :{S’;\:R] = [8:R] = 30, afy (Theorem 1, §1); it follows that
[S:E] = efvfor'l £ X < &, and, in particular, [S:E] = of. The of elements
u'y;, whi%"q):é’ linearly independent over &, form a base of § with respect to R.
Applying“the result which was established at the beginning of this proof to the

case i&fhére m = 0, we see that our base has the property stated at the end of
'I‘.hq'qrem 5.

\_COROLLARY L. The notation being as in Theorem 5, the characteristic polynomial

with respect to B of an integral element of 8 has its coeffieients in the ring of integral
elements of B, '

Let y be an integral element of 8, and let z s "** , 23 be the elements %';
arranged in some order (with 7 = ef). Then we have yz; = D1 iz with ele-
ments g:; Which are integral in £, The characteristic polynomial F(X) of y with
res‘pect to £ being the determinant of the matrix XE — (u;;), where E is the
unit matrix of degree n, the corollary 1 is established.,
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CorOLLARY 2. If y 1s an element 0 of 8, then we have v,(Nasy) = fral(y).

Tt follows from Corollary 1 that the norm {from § to E) of an integral element
of §is integral in R, from which we conclude that the norm of any unit in the
ring of integral elements of S is a unit in the ring of integral elements of R.
Now, we may write ¥ = wu™, where w is a unit in the ring of integral elements
of § and m = wg(y). It follows that »(Nyay) = arsly), where a = »{(Nyzw)
does not depend on y. Take for y an element ¢ of & such that »,(f) = 1; then
Ngzt = {7, whence ¢f = avg(t) = ae, and therefore ¢ = f.

COROLLARY 3, The notation being as in Theorem 4, we have S = R(S). Q

This follows immediately from the fact that the elements u, v, - 7= }55 of §
may be taken in S, ~\ Ny .

This being said, let us return to the notation of Theorem A4, Leét i be any
element of S ; then the mapping 2 — yz is an endomorphism. &f ‘the structure of
vector space of Sg over R. Let us for & moment identify. the algebra Sg with
the algebra [ J4-1 S, by means of the isomorphism whigh, was congtructed in the
proof of Theorem 4. For each ), let {zn, -+ , Zna ] Be@ base of 5, with respect
to R; denote by zi the element of Sz which, considéred as element of H;L.q S,
has its Ath coordinate equal to za and its othex, coordinates equal $0 0. Then all
“ the elements zi (1 < 7 < m, 1 = A £ k) taken together form a base of Sg with
respect to R. If we denote by y» the Ath cggrdmate of y, considered as an element
of [[ies S, then we have gza = 2ort: #ipga With zep € B, whence yza, =
Z:iu 2:pzp . Denote by E the matrix (Ziphigiigm then we see that the
characteristic polynomial of hg( endomorphism z — yz is the prodt_mt_ of the
characteristic polynomials of\he matrices 5 , and that the characteristic poly-
nomial of E, is the charaeieristic polynomial of 7 with respeet to R. In partic-
ular, if y ¢ S, the elemerQs:;m are all equal to y, and the chamct.eristlc pol__y'_nomml
of the endomorphisamg-— yz of Sg is clearly the characteristic polynomial of ¥
with respect to R~Thus we obtain

EEOR,E‘M\H.\'L% R and S be fields of algebraic functions of one variable, 8 being
an overfielthaf finate degree of R. Let p be a place of R; denote '?Jy PBr, -+, P the
distinct places of S which lie above p, by B the y-odic completion of R, and by S
the Br-adie completion of S (1 £ X S h). Ify e, then the c}mmcier?stw fpf)lynomwl
of y with respect to R s the product of the characterisiic polynomw!s with respect
to B of y, considered successively as element of S,y O

If B is any one of the places By, and S the corresponding corqpletmn of S(i
we shall denote (for y ¢ §) by Sp°y and N®y relatively the relative trace an
the relative norm of y from S to . Then the tollowing corollary follows mme-
diately from Theorem 6:
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CoroLLARY 1. The notation being as in Theorem 6, we have Nguy = [[i N™ y,
Spesy = a1 Sp™y.

CoroLLaryY 2. The notation beiny as in Theorem 6, we have

&
.Pn(Nsmy) = Eﬁt%;(’y):
where fi 13 the relative degree of Ty, with respect to R.

This follows immediately from Corollary 1 and from Corollary 2 tenlheorem 5,

§6. THE PUISEUX EXPANSIONS 3N

Let E be a field of algebraic functions of one variable ’oviér an algebraically
closed field of constants K, and let S be an overfield of finite degree of B. Denote
by p.aplace of B and by P a place of S which lies above Q:'Since K is algebraieally
closed, p and P are of degree 1. Let { be o uniformi’z?ng variable at p; then the
p-adic completion B of B may be identified with {hafield of formal power series
in ¢ with coefficients in K (II1, §3). N

Let ¢ be the ramification index of P with'respect to R. We shall assume that
¢ 15 not divisible by the characteristic p of K>This being the case, we shall prove
that £ is the e-th power of some elemerit of the P-adic completion § of S. Let u
be a uniformizing variable at § in, 8 We know that () = e; it follows that -
t = uy, with »p(s) = 0. Since X is\algebraically closed, there exists an ¢ ¢ K such
that ve(v — @) > 0, and we may Write a in the form b, b ¢ K. Consider the poly-
nomial W* — v = f(W) indJetter W. Its coefficients are in the ring of integral
elements of ; if we replabe’these coefficients by their residue classes modulo B,
We obtain a polynowial F(W) = Ww* — b°, which admits a linear factor W — b:
W) = (W — b)BEOW ). Moreover, b is a simple zero of f*(W); in fact, we have
(fFW)/dW) (B)(5eh 5 0, because b 3£ 0 and ¢ is not divisible by p. Making
use of Hensgi’"\s_;leﬁlma (IIT, §2), we conelude that J(W) has a linear factor with
coefficients\in.8; this means that » — w', w ¢ §, whence § = (uw)".

Denqtg{lﬁr £ any one of the e-th roots of £ in §; then it is clear that

I’ﬁB(t”e) — 1 .

Ili}\_fol‘lows that 8 may be considered to be the field of formal power series in
" with coefficients in K. The power series expansions in terms of {*° of the
elements of S are called the Puiseux expansions.

If we consider now 5 place B of § whose ramification index e is divisible by
the eharacteristic p of K, then it is not true in general that ¢ has an e-th root in
8. Consider for instance the ease where R = K{z) (x transcendental over K)
and 8 = R{z, ) where y satisfies the equation y* — y — &7 = Q. Letp be the
zero of z in R, and let B be a place of S which lies above p. We have vg(1/x) =
—¢, where e is the ramifieation index of B with respect to R. It follows that
r(y) < 0, whence n(y") < rely) and (™) = vy — ) = — ¢, which proves

N\
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that ¢ is divisible by p: On the other hand, we have e < [S:R] = p; it follows
that ¢ = [S:R] = p, and that Y? — ¥ — 2™ = 0 s an irreducible equation in
R.Wehave [S:R] = ¢ = p, which proves that ¥ — ¥ — 27! remains irreducible
in B. Now, 7 + 1 1z also a root of the equation Y?P — ¥ — g = 0. It follows
easily that § has an automorphism of order p which leaves the clements of R
fixed, and therefore that S is separable over K. Since ¢ is obviously not a p-th
power in R, it is also not a p-th power in 8. '

§7. NORM AND CONORM; TRACE AND COTRACE

Let 1t and S be fields of algebraic funetions of one variable of which we assume
that R is a subfield of 8, with the usual assumptions about the fields of consta{:ms'
{cf. §1). We propose to set up certain correspondences between divisors and
repartitions in B and in S. : O\

If  is an element 0 of B, we denote by bs(z) and bs(z) the divgsors of =
in R and 8 respectively. Let p be any place of B and let P be a plage of S which
lies ahove p; the exponent a(p) of p in 8(2) i3 »y(z), while the)exponent of Bin
bs(z) is ez} = e(B)r(x) = e(P)aly), where e(B) is the/ramification index of
T with respeet to B. On the other hand, if P is a variable pisce of § with respect
to R, then clearly »p(z) = 0. This leads to the follo ‘ing generalization. Let
a = J[,0"" be any divisor in R. If P is a place of \S"which lies above a place p
of R, we sct A(P) = e{Pla(p), where ¢(P) is the'ramification index of B with
respect to & if P is a variable place of S.,'W“e set A(P) = 0. Since above any
given place of R there lie only & finite nulnber of places of S, there are onlyqsa.
finite number of places P of S for which A(P) # 0, and the symbol IS y
represents a divisor of 8. We shalleall this divisor the conerm of o (from E to
S}, and we shall denote it by Qrm};sa. Tt is clear that, if a and b are divisors of
R, then L\ -

Cﬁi‘l’g}rgﬂb = (Cong,fsﬂ) (CUBE.-’SE])

and that, if x is an glq'{lgnt =0 in R, then
’\\\‘ Congssdr(z) = ba(x).
LeMwma 1. ,g{;;sume that 8 is of finite degree over E, and den? te by K and L the
Jields of safislanis of R and S respectively. Then, if o 18 any divesor of R, we hage
V [
S: R] .
d(CODRISu) = [—L-_—K-_] d(ﬂ).

It will be sufficient to consider the ease «where u is a place p of . Let then
B1, -+ -, B be the distinet places of S which lie above p, whence Cong/sp =
P -« PBi*, where ¢; Is the ramifieation index of P with respect t;.‘o R. Let 2
be the residue field of p, and = that of B:; then d(Congrsy) = 2uimt edZ:: L.
Now, we have J

[Em’:K} _ .[E?_EHZ_'IQ

Zell = gy T K
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The number [2:K] is equal to d(p), while [Z,:Z] is the relative degree f; of P,
with respect to B. By Theorem 1, §1, we have 2otaefi = [8:R]; Lemma 1 is
therehy proved. )

Now, assuming § to be of finite degree over R, we shall generzlize to divisors
the notion of the norm from S to R of an element of 8. Let ¥ be any clement,
#0 in 8. Let p be a place of R, and let Py, - - - » Pu be the places of 8 which
lie above p. Then we have Ngzy = TT, Ny (Corollary 1 to Theorem 6, -
§6). On the other hand, we have po(N¥iy) = five; () (Corollary 2 to Theorem
5, §5). Tt follows that »,(Ngmy) = > ve;(y). This beingsaid, let 9 = Hs;EBA(%}
be any divisor of 8. If p is any place of B, set a{p) = > 1, F:44P:), where
P, -+, Py are the distinct places of S which lie above 3, while {3 the degree
of PB; with respect to B. Then it is clear that there are only a figite number of
places p of R for which a(p) » 0, and therefore that the symboliﬂ,,’p““‘) represents
a divisor of K. We shall call this divisor the norm of U (from\S to B) and we shall
denote it by N/, It is clear that, if % and B are di\gis:c:rs of 8, then

n\
NgizdB = (Nged)(Ng/nB)

and that, if y is an element 0 of S, then N

Nara(ds(y)) = 06 era).
The operations of norm and conorm wrerelated to each other by the formula
Ns;x(@l%ﬁ;z}sa) = Cl[S:R]

in which a stands for an arbitrerydivisor of B. Tt will be sufficient to prove this
formula in the case where s & place p. Let then B, , - - - , Ba be the distinct
places of S which Lie abote) p; denote by e; the ramification index of B with
respect to R and by fq}ts relative degree. Then

g Ny h h A
NSJ’R.(&)ﬁRMp) = Ngﬂz H SB:" = H p‘l‘fi — pzi-leif.'
PAY im]

i=al

: P2\
and our formuid-follows from Theorem 1, §1.

LEtha}z'.\Assumé that S is of finite degree over B, and let K and L be the fields
of constonls of R and S respectively. Then we have, for any divisor A of 8, d{(N g ) =
[L:\'K}'d{’i’l).

It will be sufficient to prove this formula in the case where 9 is place P.
Denote by p the place of R whick lies below B, by Z(PB) and =(p) the residue

fields of P and p respectively, and by f the relative degree of P with respect to
R. Then we have

WNezB) = d(v) = f2(y):K] = [Z(B): 22 : K] = [S(P):K]

= [Z(P):LIL:K] = [L:K] 4(B)
and Lemma 2 ix proved,
Now, assuming that § ig algebraic over B, we bropose to associate with every
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repartition in I2 a repartition in S in such a way that to the principal repgrti-
tion attached to an element x of R be associated the principal repartition at-
tached to x in S. :

Let B be any place of S. Since 8 is algebraic over R, B lies above some place
p of R. The P-adic completion § of S may therefore be assumed to contain the
p-adic completion I of E as a subfield. Let r be a reparfition in B; if we assign
to every place P of S the element 1(p) e B < 8§, we obtain a repartition of S.
Tor, since enly a finite number of places of 8 lie above any given place of R, it
is clear that there are only a finite number of places P of S for which »e(z(p)) < 0.
The repartition of S defined in this way is called the cotrace of 1, taken from R io
8: we shall denote this repartition by the symhbol Cospgst. It is elear thatyif
¢ and ¢’ arc repartitions in B and A, X' constants in B (and therefore also’in
S, then O 2,

Cospr/s(AL + N'2') = A Cospzyst + A Cospayst’ A

If z ¢ R, then we can attach to z a repartition in B and a:répartition in S.
Until now, we have used notations which did not differentiate between x and
the repartitions attached to it; however, this convention.wotld lead to ambigui-
ties now that we have two fields to deal with simu]taﬁ\ebusly. For this reason,
we shall denote by 5z the repartition attached toa-n E, while, if y e 8, we shall
denote by y5 the repartition attached to ¥ in SThis being said, it is elear that,
if x ¢ B, then )

COSPR,'&EC,F,":—‘“« X5

~ Now, assume that S is of finite degree over B. In this case, we shall generalize
to repartitions the notion of the. frace of an element of 8 with respect to R
Denote by y an element of Q‘y 'y a place of B, and by Poy,-c s s13;1"‘:-}:1(-3 d‘gg-
tinct places of S which lie above p. Then we know that Spsisyy = 3 Spy
{(by Corollary 1 to Theoréha 6, §5). Now, let p be any repartition in 8; f{.‘ﬂ' each
place p of R, sct 1{b) \~—:\Zf_1 Spas‘n(ﬂ},v). Then the mapping p — lp) s a re-
partition in R. Fou there are only a fimite number of places B of S for which
7®(P)) <0, &n(bif pis a place of B which does not lie below any of thes?, the_n
w(x(p) = 0 ,f@orollary 1 to Theorem 5, §5). The repartition ¢ defined in this
way is calléd)the trace of v, from S to R, and is denoted by the syml-)ol Spssad-
It is clea %hat., if y and o are repartitions in 8 and A, A’ constants 1 E, then

Spere(dy + My) = N Spassb + N_Sps,mn’-
On the other hand, if y € 8, then

Speris = (SP&FR?)E . ' ' .

Rumarg. Even if we are dealing in S with & repartition y such that y(P) € S
for every place B, it will not be true in general that (Sps )(p) € B for every place

p of R. This shows that the definition of the trace could not have been given in

terms of our old definition of repartitions; the generalization which was accom-

Plished in ITT, §4 is here necessary.
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I the field S ©s not separable over R, then Spgzy = 0 Jor every repartition v in 8.
To show this, it will be suffieient to prove that, if we denote by B a place of 8,
by p the place of B which lies below B, by B and § respectively the p-adie
completion of B and the B-adic completion of S, then S is not separable over &,
Let B’ be the subfield of S composed of the elements of S which are separable
with respect to B. Denote by p’ the place of R’ which lies below P and by B’ the
p’-adic eompletion of B, If p is the characteristic of 8, there exists an exponent
m suck that " ¢ R’ for every y e 8. It is clear that the conditions »g(y) > 0
and vy(y"") > O are equivalent to each other, which proves that § is the only
place of § to lie above p’. Tt follows that [S:F] = (S:R] > 1 (Theorem 4, §3).
On the other hand, we have § = R'{S) (Corollary 3 to Theorern 5} §3), which
proves that 8 is purely unseparable over E'; our assertion ig thicreby proved.

Let ¢ be a repartition in B and 2 an element of S. We sha}is prove the formula

(1) Sps/z(z Cospayst) = (Spsmz)& N

Denote by p a place of B and by Pu, -+, By the d;’»s,t-iflct places of § above .
Then we have (Spgya(z Cospayst))(p) = 2.NSD (e Cospast)}($:). Since
(Cospa/s2)(Bi) = 1(p) is in the p-adic complet{Qn of R, this is equal to

(i 8p%2) e o) = Spsra)z (o),
. which proves our formula, O

Lemwa 3. Let R, 8, and T be figlds of algebraic functions of one variable such
that B is o subfield of S and S of TIf a i3 any divisor of R, then we have Congra =
Congr (Congen). If T 4s olgebrdic over R, and if T is any repartition in R, then
we have Cosper 1 = Cospgha™ (Cosprsst). Assume now that T 45 of fintle degree
over B. Then, if 9 is ankﬂiﬁésor in T, we have N 7z = Noa(Ngs2), and, if yp @s
any repartition in T, we\have Spral) = Spyr (Sprysy).

1. It will be sufficient to prove the first formula in the case where ¢ is a place
Po. In this case,the only places of T which actually occur in either one of the
divisors C«,{n,};}»a or Cong; r(Congysa) are those which lic above po. If P is any
one of these; then % occurs with the same exponent in our twe divisers in virtue
of Lendtia 4, §1.

Z‘I”f T 15 algebraic over R, the formula Cosprsrt = Cosps; r(Cospryst) I8
obyious,

3. Assume from now on that T is of finite degree over R, It will be sufficient
to prove the formuls Nzl = Nya(Ng/s¥) in the case where ¥ is a place of T
In this case, the formula follows immediately from the last assertion of Lemma
4, §1. '

4. We shall now prove the formula Spaal) = Spsyw (Spryay). Let by be any
place of R; then (Spra) (pe) = Z?:»l Sp?ﬁﬂn(%f), where Py, .-, P, are the
distinet blaces of 7 which lic above Yo , while Spai, represents the trace from the
*B,-iadic completion of T' to the py-adic completion of R. If p, is the place of S
which lies below P, | then Sprian(By) = Spe (Spris(B.)); where Spaiy is the
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trace from the pi-adic completion of S to the p-adic completion of B, while
Spf'} p is the {race from the P-adic completion of T fo the p;-adic completion of
S. Let p e any one of the places of § which lie above po . If we denote by U, the
gum. of the terms Speian(B.) which are relative to the indices ¢ for which 9; = 9,
then U, is equal to (Sprs)(p), and (Sprz9)(po) is equal to the sum of the
quantities $pl/eL; for the distinct places p of S which lie above no (where Sphrz
is the irace from the p-adic completion of § to the po-adic completion of £). -
Our formula is thereby proved.

§8. THE DIFFERENT -

In this seetion, we shall assume that B and S are fields of algebraic functiens of
one variable such that & is a separable overfield of finite degree of B. L&tP be
any place of 8, and let p be the place of R which lies below %B. Then the, B-adic
completion S of § is separable over the p-adic completion B of (&) as follows
immediately from Corollary 3 to Theorem 5, §5. If y ¢ S, we-know that the
condition vy} = 0 implies v,(Spgy) = 0 (Corollary 1 to E[‘heorem 5, §5). But
the converse is in general not true: we may have elemenisde'S such that w(y) <
0, but #»(8p y) = 0. However, we cannot have 7,(8 ;By) =0 for every y e S.
For, since § is separable over R, there exists an elemeh‘%gl ¢ § such that Sp°y: # 0.
1f z is an element of B such that »(z) < — vp(Sp%j, then we have wy(Sp ) <
0. It follows that there exists a largest intpgér i = m(P) with the following
property : if ¥ js any element of S such that :fass(y) = —m(P), th?j!l vp(Sp$y) z 0.

'The integer m (%), which is of course =0 % called the differential exponent of T
(with respect to R}, N\

TuEoREM 7. Let I and S be figldsof algebraic Junctions of onevariable; assume that
I is a subfield of S and th{b@é“i@ of finile degree and ‘separable over K. Let B be
aplace of 8. Thenithediffereniial exponent m(%) of B with respect to B isat least equal
o e — 1, where ¢ is thédamification index of B. In order for m(B) to be equal to
e — 1, it is necessapyoand sufficient that the following conditions be sat@sﬁed:_ 1) t?w
residue field of SX s separable over the residue field of the place Y of R which lies
below P; 2) ¢ 3 ndt divisible by the characteristic of B.

) Let Z($) and Z(p) be the residue fields of_‘)}S and p respectively. If 2 is*ar}y
integrdl elément of the P-adic completion 8 of 8, we shall denote by z* its
residue Class modulo . We shail prove the formula

() Sp¥)* = eSprwpm t
Let % be a uniformizing variable at P in S,andlet 61, -" f; be e]emeflts of. the
ring of 5 whose residue classes 61 , =" » g modulo P form & base of £{P) over

2(p). Then we know that the elements w0t se— 11 g.j < fiform a
letion B of R, and that, if we st

base of § with respect to the p-adic comp

e—1 _
) 'l = 2 i gign 1, Qi € A
: =t 5
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the elements a;;;; of B are integral (Theorem 5, §5). We have Spmz = Zf;&
D Multiplying the formulas (2) relative to the case ¢ = 0 by «', we
obtain

. e=l f .
(3) au'f; = E Z Qojxt wte,,
=0 1=t

Let t be a uniformizing variable at pin B, whence »o(t) = e. If &k + 4 = e, we
have 4**70, = ivy; with v, integral in S. We may express each v:; as a linear
combination of the products w*'6;, (0 < &' < ¢ — 1,1 = ' £ f) with coefficients
which are integral in 7. Substituting these expressions in (3) andgrouping like
terms, we must find the expressions (2). From this, we conclufle casily that
v(@img) > 0 & < 4, wylagm — Gig-i1) > O0H 4 £ & = ¢(=3"1. This implies
that of; = b7 does not depend on 7 and that (Sp*2)* £ 25 bY . On the
other hand, the formulas (2) for i = 0 give z*6% = 254 adbr ; since bY =
aip; , we find that Spzeyzme* = 2.5 bF . Formulax(1) 3s thereby proved.

Now, let i be an element of S such that w(yhZN— (¢ — 1). Since sg(f) = e,
we have vg(fy) > 0, whence, by (1), v;,(Sp%y) Y+ up(Spqsy) = 1 and there-
fore vp(SpBy) 2 0. This proves that, m(P) = g1, If either one of the conditions
stated in Theorem 7 fails to be satisfied, theii it follows from (1) that »,(Sp¥2) > 0
for every integral element 2z of 3 (we kttow that, if Z(B) is not separable over
2(p), then the relative trace with respert to 2(p) of every element of (P} is 0.
Applying the same argument as above t0 an element y such that »e(y) 2 —e, we
see that m(P) = e. If, howevery the two conditions of Theorem 7 are satisfied,
then Z($) contains an elements:* whose trace with respect to Z(P) is =0. If =z
is an integral element of § Belonging to the class 2*, then we see that ve(Sp*z) = 0,
whence v,,(Spg‘Bt_lz) = 7L which shows that m(P) < e, whence m(P) = ¢ — 1.

Now, we shall cqn}:e t the differential exponent with the discriminant of a
base. Let U be a fidldy and let V be an algebraic extension of U7 which is separable
and of finite degree over U/, Tf {or, --+, v,} is any base of V with respect to U,
the defermingnt’of the matrix BPv/ ot 5)151,55. 18 called the diseriminant of the
base {m 3£, v.}; wo shall denote this element by D{w, -+, v,). We have
Doy, &N va) = 0. In fact, the matrix (Sprioww;) is the representative matrix
(xw'it,}%fréspect te the base {u;, - -~ , v.}) of the bilinear function B defined by
BOY') = Spyww’. Since V is separable over U, there exists a 2y ¢ V such that
SPvsum 5% 0; if v is any element > () of V', then Spy, ww(v o) = 0, which proves
that the bilinear form R is non degenerate.

LemMa 1. The notakion betng as en Theorem Tyletalso {yy, -+, yal be a base of
the B-adic completion § of S with respect to the v-adic completion B of R whose
elements are integral in 8. Then we have v (DG, -+ | yu)) = Tm (), where f s
the relative degree of P with respectto R. A necessory and sufficient condition for the
equality n(D(y, , -+ | y,)) = Fm(PB) to kold is that our base be an tntegral base
(ie., that every inlegral element of 8 be expressible as a linear combination of ¥ ,

© s Yn with tntegral cogfiicients in R).
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We know that there exists an integral base {z, «++ ; 2} of 8§ with respect to
B (Theorem 5, §5). We can then write _ .

» 1t
B = Elbt‘:'yh ys‘=§6|‘jz_;
G -

with coefficicnts b;; and ¢ in R; furthermore, the elements ¢;; are integral, and
the matrices (by;) and {¢:;) are inverse to each other. We see immediately that
Dlyi, -+ s %) = v Dz, -+, Za), Where ¥ = det(c;;). The elements ¢¢; belng
integral, we have »(y} 2 0, whence »(D1, <7, ¥n) Z vo(D{E1, * 5 Za))-
If »,(y) = 0, then ~ ' is integral, from which it follows easily that the elements
bs; of the inverse matrix of (c.y) are integral. In this case, every integral elerent.
of §, being expressible as a linear combination of 21, <** s Zn with . integrak
coefficients in I, is also expressible as a linear combination of 1, &% Y, With
integral coeflicients, which shows that {y1, -=* , ¥=) 1881 integral.base. Con-
versely, if the base {yn, <+ , ¥n} 18 integral, then the coefficienté by; are integral,
and 47, which is det(b;;), 18 integral, whence py(y) = 0. Thuis we see that a
necessary and sufficient condition for the base {31, ~< odin} to be integral is
that »o(D{y1, ~ -+ > Yn)) = vo(Dlayy -+ 5 2ah)- Now)) we have to compute
2Dz, -+, 2a)). Let U be the set of elements ¢ « §kuch that SpYey is integral
whenever ¥ is integral. If % is a uniformizing variable at $ i S, we clearly have
9 = " P, where O is the ring of integral elements in S. We shall determine
the set 9 in another manner. Since D(z:r‘,fé Y.,z # 0, We can rﬁnd elen}ents
21, v+, 24 of §such that Spg’z,—z; is l,i‘f'.if£ j andﬁotherwise; Mo, -, onare
in R, then Sp* (i wizs)z; = g7 > whence sp*(ka wizi)e = Z}"Tl':tﬂ:,- if
2= ) haxi, ;e BRIt followg \that a necessary and sufficient condition for
Sk ziz:i to be in U is th @;.,’ e, z be integral. This shows in particular
that {2} , - - - , 2} is a base, and that (™, u™ Pz} is an integral base.
Write u™ P2 = 3. fu@2;, With o € B. Then it is clear that det(e:) =
N*"® whence », detlass)) = fm(B) (Corollary 2 to Theorem 5, §5). On the
other hand, if we'sét z; = Z}‘ 1 B ﬁ;’“‘g’z; , we know that det (8:;) is a unit. If
we denote by (q%l)"ﬁhe product of the matrices (a;7) and (Bis), then we bave z; =
% viit)  whence yi; = Sp zz; - It follows that 7D, - 222 = vildet
(8:5)) Jialdlet (ais)) = fra($). Lewsma 1 is thereby proved. '

Luaik 9. Let B and S be fields of algebraic functions of one variable such that S

is a separable overfield of finite degree of B- Let y be aplace of B, and lfat Ba, oo s P
be the distinct places of S which lie above P. Denoie by fy the relative degree of P
with respect to R and by ma ifs differential exponent. Let {y1s - » Ya} be a baSC of
S with respect to B whose elements are integral over the m’ng.of P Tk_es:t we have
2Dy, -, g)) B e mafa 5 and @ necessvy and sufficient condition for the
equalily o take place is for {th, - " > y.) fo be integral at -

Let R be the p-adic completion of RB. We c_gnstruct th.e algn?bra Sz deduced from
§ by extending the basic field from R to B, and we identify (by means.of the
 isomorphism constructed in the proof of Theorem 4, §5) the algebra Sz with the
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product: HLI Sy of the Pr-adic completions S, of S(1 <= X = R). For cach A
we defermine an integral base { N s T 3;9} of S, with respect to I, and we
denote by za the element of Sz whose Ath coordinate is zir , while its other
coordinates are 0. Then the elements 2o (1 S ¢ S my, 1 = A < k) form a base
of Sz, and the integral elements of Sg are expressible as linear combinations of
the elements 2, with coefficients which are integral in B. Let &y, --- , ¢, be the
elements zn arranged in some order. Arguing as in the preof of Lemma 2, W see
mmediately that, if {z,, --- , 2.} is any integral base at p of 8 with rospect
toR, and if 2; = D31 s, then vy(det(ei;)) = O (cf. the remark which follows
the proof of Theorem 4, §5). Now, if u ¢ S, wehave Spgee = D ory Sp%"lK(OoroL
lary 1 to Theorem 6, §5); it is therefore natural to define for every & =\ , -,
) e Sg(withua e S, 1 €\ 2 h} the element Spyzau to be ZLkSp%”- Then
we have "\

DG, z) = (deblass)’ (det(Spsgata)

Now we have zmszrr; 0 if A > N and zpzin i 'tlie”element- of 'HLI S
whose A-coordinate is zazin , the other coordinates héing zero. It follows im-
mediately that - Y

R ’r\‘ r
det(Spuzss £485) = g Blas, -+, 2uyn)

whenee, by Lemma 2, po(Dzm , - - - ,;z;;')')’ V= ZLI Jun,, . Now, we may write
Yo = 2oiabie; by € R; the elementg by are in the ring of p whence voD , -,
¥} 2 v(Dla, -+, 2,)), and we Bee as in the proof of Lemma 2 that a neces-
sary and sufficient condition fori{yl » *** 5 ¥a) t0 be an integral base at p is that
roldet(h:)) = 0, ie., thaty@(yl y o te)) = D, -, 2a)).

LEMya 3. Let R and Scbe fields of algebraic functions of one variable; assume that
8 is an overfield of R Q@15 of finite degree and separable over R. Then there are only
a fintte number of piqc,es B of S which fail to satisfy simultaneously the following two
conditions: P is unramified with respect to B; the residue field of P 4s separable over
the residue ﬁeg(baf the place p of R which Lies below .

Let {y, \;f :¥-, 7.} be any base of § with respect to R. Then we know that
{y1, 2 \y¥.} is integral at almost every place of R (Lemma 3, §3). Since
Dy, ™, 32) 0, we have (D@, -+, 1)) = 0 for almost every place
pof B If pis a place of B at which the base {im, -+, g} is integral and for
which », (D(y1, - -+ ) = 0, then it follows from Lemma 2 that the differential
exponent of évery place of S which lies above p is 0. Muking use of Theorem 7,
wo see that any such place is unramified with respect to R and that its residue
field is separable over the vesidue field of p. Lemma 3 is thereby proved.

The situation being as described in Lemma 3, let, for any place P of S, m(P)
be the differential exponent of P with respect to R. Then we have m(P) = 0
for almost all places B of 8, from which it follows that the symbol II&}‘BMW
represents an integral divisor of S, This divisor is ealled the different of 8 with
respect to K.
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Lunewa 1. Let B oand S be Jfields of algebraic funclions of one vartable; assume
that B is @ subjficld of S and that S 1s of finite degree and separable over R. Lt F
be ¢ finite sct of places of R, and let F* be the se of places of S which lie above the
places of F; let there be given for each p ¢ F an indeger a(n). Then the following two
sonditions on an arbilrary element y of 8§ are equivalent to each other: 1) we have
wiy) = —m(R) + alp)e(P) for every P e F*, where e(PB) and m(P) are respec-
tively the ramification index and the differential exponent of P with respect to R,
while v 18 the place of K below R; 2) if 2 is any element of S such that vy(2) = 0 for

all SB [3 F*, then V;,(Sps;uy.Z) = G{D) fﬂ?‘ all e F. _

Let ¢ be an element of R such that o(f) = —a(p) for all p « F (Corollary to
Theorem 3, I, §6). Then we have, for P e F*, wlty) = vy} — alme( P where
v is the place of R below $. On the other hand, we have Spsatyz =’!; *Bps/alz,
whence vy(Spsalyz) = vi(Spsryz) — a(p) for p ¢ F. It follows thatuat-will be
sufficient to prove Lemma 4 in the case where the integers a(p)‘,af’ré'o. We shall
assume from now on that this is the case. O

Assume first that 1) is satisfied. Denote by b a place in Eyand by B, s Pa
the distinct places of 8 which lie above p. Then we havéyfor'any z ¢ 5, Spaseyz =
S 8pPiyz (Corollary 1 to Theorem -6, §5). 4 = 0 for all P e F¥
the vy, (y2) = —m(P) (1= i < h), whence }rp@p yz) = 0, and therefore
n(Spsayz) Z 0.

Now, assume that condition 2) is satisfied and that y 5 0. Let Po be any place
in F* and let Z be any integral elementref the Bo-adic completion S of 8. Let z
be an element of S which satisﬁesj‘éﬁé following conditions: vz — 2 =
max{0, —ve, ()}, r(z) Z max{Q,Ccrsly)} for every place § of F* otber than
Py (¢f. Theorem 3, 1, §6). Themibis clear that # is integral ab every place in F*,
whenee »,(Spg;»yz) = 0 for &z@ry p e F. Let po be the place of B which lies below
Bo,and let Ty = To, BLy -+ » Pn be the distinet places of S above b . Then
Spamz = 3% SpUydddf 4 > 1, we have v (42) = 0, whence #,,(Sp 42 Z 0;
it foliows that v,n(s,p$°yz) = 0. Sinee re 2 — yd) z 0, this implies that
PSP tyE) = %E}Crery element 7 of S which is such that 7s,(7) = 7e.(y) can
be written indhe form yz, with Z integral in §; thus, for any such i, we have
74(Sp™*7).200. From this, it follows that ve,(§) = —m(Po); Lemma 4 js thereby
proved™\\

Tueorem 8. Let R, S, and T be fields of algebraic funclions of one variable.
Assume that R is a subfield of T, that T 1 of finite degree and separable over B, and
that 8 is an intermediary field befween R and T. Denole by Dz, Dms and
Diw respectively the differents of T with respect to B, of T with respect 10 8, and of S
with respeet lo R. Then we have Dz = Days + Conar #Dsyn -

Denote by p a place of B, by the set of places of S which lie above 9, and
by F* the set of pi)aces of T wh3'17c-h Jie above p. IO ¢ F¥, denofe by mL), n@%
and ¢(Q) respectively the differential exponent of &1 w1't-h re_spet_:t to R, the (:?ut:L
ferential exponent of £ with respect to 5, and the ramification mdex‘of L wit .
respect to S, 1f q ¢ I, denote by m(a) the differential exponent of q with respec
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to B. 'We have to prove that m(Q) = u(Q) + e(2)m{q), where q is the place of
3 which lies below 1. We denote by m’()) the right side of this formuis, Let y
be an element of T such that va(y) = —m(Q) for all O ¢ F* (ef. Corollary to
Theorem 3, I, §6). Then, by Lemma 4, we have volShrsye) = 0forall z e T
such that »o(z) = 0for 2l £ ¢ F*. We know that Sprayz = Spsa(Sprsyz).
Let 2 be an element of Ssuch that v,(z:) = 0forall g ¢ F. Then vo(Spse21Sp rysyz) =
ro(Bpmeyzz) 2 0 since y,(z2) = 0 for all O ¢ F* . Making use of lLemma 4,
we conclude first that v (Sp msy2) 2 —m{q) for all g € F, and then that raly) =
—m/(Q) for allQ « F*, whence m(Q) < m'(Q). Now, let ' be any elemont of 7
such that ya(y') = —~m'(Q) for allQ ¢ F* (of, Corollary to Theorem 3, I, §6).
Making use of Lemma 4, we see first that vBprsy'z) = —m(q) for all 2 & T
such that »a(z) = 0 for all O ¢ F* and then that 1(SPwayld) e 0, whence
ray) 2 —m(Q)forallQ e F* . This proves that m/ (1) = @), Theorom 8 is
thereby proved. N\

77%&
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§9. STRUCTURE oF HYPERELLIPTIC §TELDS

Let B be a field of algebraic functions of one variable, and let o be 3 differential
#0in E. Then any differential o’ of R may be wktten in the form 4w, where u is
an element of B which is uniquely determined“when w and «’ are given. The
element « is called the ratio of the differentiols o and o, and is often denoted by
o / o, R

Let us assume that R is of genus g >0. Then it is clear that every constant can
be represented as a ratio of differentials of the first kind. If g = 1, then conversely
every ratio of differentials of the Brst kind is a constant. However, if ¢ > 1, then
there are non constant elemengswhich may be represented as ratios of differentials

* of the first kind. The field Ris'said to be hyperelliptic if the subfield of R gencrated
by the ratios of differeqti}:ls of the first kind is different from R itself. We propose
to prove the fo]lowjng result

AS
Tasorey 9. LefBbe  field of algebraic functions of one variable which is assumed
to be of genus >l hen a necessary and suficient condition Jor R o be hyperelliptic -
is for B tq]hvé a subfield S of genus 0, coniaining the field of constants of R and
over wh@'gﬂ.‘R 8 of degree 2. If this condition is satisfied, then S is undgue and is the
field gf@‘ezrated by the ratios of differentials of the first kind of R.

We'shall first prove that the condition is necessary.

LeMwa 1. Let 4 be q place of a field R of algebraic functions of one variable of genus

g > 0. Then there exisis a differential of the first kind of R which does not have b
as a zero,

Assume for a moment that this were not the case. If ¢ is any divisor, we denote
by 8(a) (as we did in IT) the dimension of the space of differentials which are
=0 (mod ). Then we would have 6(p) = ¢, whence, by the theorem of Riemann-
Boch, Up™) = d(p) — g+ 1 + g = d(p) + L and there would exict a non.

constant x ¢ i which is multiple of p™; we would obviously have »y(z) = —1.
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Let « be any differential #0 of the first kind; then 27 would be of the first
kind but would not have b as o zero. :

CororLary. Lel a be an integral divisor of a field R of algebraic functio'ns af one
sariable. If we have (o) = d(a) + 1, d{a) > 0, then R is of genus 0.

Tor the equality la™") = d{a) + 1 iraplies, in virtue of the theorem of Rie-
mann-Roch, &(a) = g, where g is the genus of R, and this means that every
differential of the first kind of B is = 0 (mod a). :

This being said, assume that R is of gepus g > 1 and hyperelliptic, and denote
by & the field generated by the Tatios of differentials of the first kind of R. Since
99 — 2 > 0, we can find a place p of B which is & zero of some differential of the,
first kind of R (ie., we have d(p) > 0). We shall denote by po the place, of S
helow p, and by & the divisor Congzbe - Let cobe a differential of the first Xind of
R of whieh p is not a zero. f wis a differential which is =0 (mod p), then « =
way , with u ¢ R, and, since w and wo are of the first kind, 1 ¢ S. Ifis\clear that
yis a zero of uw in E; therefore, py is a zero of u in 8, which imiplies that the
divisor of zeros of u in B is divisible by 8. Thus we see tha “every differential
which is multiple of v is also muitiple of 8. ) '

Ve g )
Lemma 2. Let p be ¢ place of a field R of algebmié\functz'ons of one wiwmble.

Assume that every differential of R which 18 multiple Qfpes also multiple of an integral

divisor & which is divisible by p, and that there gxists af least one such, differential

which is 0. Then we have (87 = I(}Jdll,ji':id(ﬁp_l) and d(8y ) = dlp).

 We have by assumption 8(8) = 5(}9)50&1 the other hand, we have W =
dip) — g+ 1+ 8(p), where g is the g@us of &, and 5(3_1) = d(8) — ¢ +1+ 5(8).
The first assertion of Lemma fQiio‘“fs immediately from these formuls_xs. Let u
be any element of B which is n:%i’clple of 7 'p. Then, if wis any differential which
is multiple of p, and thereforeralso of 8, uw is again multiple of . We shall see that
w must be a constant. Ihot, » would have 3 pole g; let then m be the s;nallest
value assumed by weld) “when « runs over the seb of differentials V‘_Vhlch are
multiples of p; th@l'v;(w) # oo gince our seb containg at least one differential
#0. There would, exist a differential @1 ; multiple of p, for which #e(wr) = m; bub
then we would have si(tier) < which brings & contra,dictionil'l‘hus Wflhave
1(8"p) =\1)Making use of Formula (4), 11, §1, we see that 3(3_1) — U3 _pl) =
d(p), whence, in virtue of the formula proved above, (& p) Z 10 ) + d(er )
dp) 2 1+ d(ap ™) — d(p); it follows that dey ™) = dlp)- .

_ This being said, let us return to the proof of Theorert 9 and to tl:e notation
introduced above. Among all places of B which lie abowe po , 16 P be one of
smallest relative degree with respect t0 R. Then 8(»") > 0 and every differential

which is multiple of ' is multiple of 8. Thus we have d(sp™) < a(y); it follows

that either § = p = P or § is the product of two places (distinct of not) which
have the same relative degree f with respect to - Assumpe that Wwe 256 1. the
second case. Observe that any element of B which is mult:;lplel of 8" 18 S
(because, if y is such an clement, and © 2 differential 70 which 18 multiple of &,
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then yw 1s of the first kind). It follows immediately that I(s™") = I(p;?) whence,
by Lemma 2, I{ps") 2 1 4 d(p) = 1 + fd(p). But it is clear that we have
I(po") £ 1 + d(p) (because 5(ps) is at most equal to the genus of S). Thus we
have f = 1 and I{p5") = 1 + d(ps). Making use of Theorem 1, 81, the equality
[ = 1 implies that [R: 8] = 2. Making use of the corollary to Temma 1, we see
that 8 is of genus 0.

Now, we have to consider the case where 8 = p. Let f = [I2: 8] be the relative
degree of p with respect to S. Denote by b the divisor of some differential wy # 0
of the first kind which is not multiple of y, and by Z(p) and Z(po) the residue ficlds
of p and p, respectively. Let £ be any element of Z(p) and 5 a differential of &
which is multiple of p~'d. Let ¢ be a repartition of R which assighe*to p some
element of B which takes the value £ at p and 0 to every other pluce. Then
7(t) depends only on ¢ and #, for, if ¢ and t' are two repartifions which satisfy
our conditions, then ¢ — ¢ = 0 (mod p) and, o Jortiord, ¢’ w=r = 0 (mod dp).
Set Ly (8} = 9(1). Then n — L, is a linear mapping of thé’space D of differentials
=0 (mod p'b) into the space of linear functions on 3() (considered as a vector
space over the field of constants K of R). The diffetential «, is of the first kind
and contained in D; we have L., = 0, which shows that the dimension of the
space formed by the functions L, is £ dim&®“~ 1. Thus the subspace X of
Z(p) formed by the elements £ such that Lg%~ 0 for every n ¢ D is of dimension
2d(p) — dim D + 1. The differentials. # €D are those which can be written in
the form yas , with y ¢ R, y = 0 (mod¥ ). Thus we have dim © = I(y™), and
this is equal (by an argument used above) to I(py"). On the other hand, let &
be an element of X, and let the.repartition 1 be defined as above. Making use of
"heorem 2, T1, §5, we see thaf bhere exists an element « ¢ B such that u — r=0
{ nod pb_l). Then % is lﬁpfe of 5™ and takes the value £ at 9. The differential
®ay being of the first kindy we have « ¢ S, whence £ « Z(po). Thus we have dim
X = dlpo), whence dépn)'z d(p) — Up™") 4 1 = fd(ps) — I(pg™) + 1, and i7" =
tf — 1) d(po) + 1{But we know that ") = dipe) + 1; thus, we have [R: 8] =
F=2and Z(ppffj,¥' d(ps) + 1, which implies that S is of genus () {Corollary to

Lemma 1). This concludes the proof of the fact that any hyperelliptic field of
genus g >‘1 Is quadratic over a field of genus 0, viz. the field generated by the
ratios ef the differentials of the first kind.

Eet\e6nversely R be a field of algebraic funetions of one variable which has a
subfield 8, containing the field of constants K of £, and which has the following
properties: 8 is of genus ¢ and [R: 8] is equal to 2. Assume furthermore that R
is of genus ¢ > 1. Let qo be a place of S of smallest possible degree; then we
know that d{a) is either 1 or 2 (I1, §6), Let us first consider the case where
either d(q) = Lord(q) = 2, 9= 1 (mod 2). In that case, we set gy = af " if
() = 1or o = o P#2if d(m) = 2; thus we have dlm) =g — 1.8t a0 =
Congaay , whence d(a) = 29 — 2 (Lemma 1, §7). Sinee S is of genus 0, we have
Uo3) = d(m) + 1 = g. Denote by ¥ the space of elements z ¢ S which are
multiples of ", whence dim € = g. We have g =Uag) = (oY) = d(a) —
9+ 1+ 80) =g~ 14 5(n), whenee §(a} > 0. This means that there exists



STRUCTURE OF HYPERELLIPTIC FIELDS 77

a differential @ # 0 of B which is muitiple of . If z ¢ €, then zw is of the first
kind. Since dim ¥ = g, we see that every differential of the first kind of R is of
the form zw, 2 ¢ 5, from which it follows that B is hyperelliptic and that the
field & generated by the ratios of dfferentials of the first kind of R is contained
in 8. But we know from the first part of the proof that [B: ] = 2;1it follows
that 8 = 5.

Consider now the case where dla) = 2,9=10 (mod 2). We then set a =
@ a = Congnto . By arguments similar to the ones which were used above,
wesee that i{ay ) = ¢ — 1,8(e) > 0. Let « be & differential 70 which is muitiple
of a; then the divisor d(w) of @ is of the form ab, where b is an integral divisor
of degree 2. Since d(go) = 2, every place of § is of degree 22, and the same\is
true a fortiori of every place of B. Thus % is a place p. If z is an element of S
which is multiple of ag®, then zw is a multiple of p, whence 3(p) Z g &b We
have I(p™") = d(y) — g + 1+ 8(p) = 2. Hw is & non constant element of E-
which is multiple of p™, then the divisor of poles of wis y, whence TR!K {w )] =
2 by the corollary to Theorem 4, I, §8. Using instead of & Jhe “field W =
K {w), which has a place of degree 1, we are in the case-¢énsidered above, and
we see that 7 is the field generated by the ratios of {liﬁerentia.ls of the first
kind of B. We have I(qs)) = d(a) + 1 = 3;1et L, {2} be a base for the space
of elements of S which are multiples of gg”. Thiefiydo is the divisor of poles of
win 8, whence [S: K (w)] = 2. H as is the place'ol K {u) below g , then I(g) =
9, from which it follows immediately that %K (u), whenee 8 =K (w,v). I
g > 2, then w and » are multiples of gz \which implies that % and s are of
the first kind, and therefore that u 2 id o are in W, whence 8 < W;but this s
impossible, since S has no place“qf degree 1, while W has one. _If g = 2, de-
note by po the place of S belogpyand by ¢ the divisor Cong/zp - Sinee d(p) = 2
and d(po) = 2, we have d(ph= and d(¢) = 4 (Lemma 1, §7). Since 29 — 2=2,
we have §(c) = 0, wheneeylfe ) = do) —2+1= 3. On the oth-e ' hand,_}wte
have I(ys") = d(m) H.4 =3, and every element of S which is multiple of po 18
multiple of ¢! in R:‘Sh]“ce 0w = o), we conclude that every eleme'nt_ of B
which is multipleb&'t;l is in S. This applies m particular to w, since divides¢.
Thus we see_that S contains K ). Since [R:8) = [R:K {w)] = 2, wehave
8 = K {w{)But this is impossible for the same reason as above, Thus we see
that thégepond case cannob ocour. Theorem 9 18 1OW completely proved.

The field § of Theorem 9, being of genus 0, has n place of degree =2, from
which it follows that a hyperelliptic field of gerus ¢ > 1 has a place of degree
£4. Moreover, the last part of the proof shows that, if g 15 ens then £ has @
place of degree <2. If R is separable over S (which certainly happens it B 13 of
~ characteristic £2), then it can be proved that at Jeast one place Of. R is ramified
W'lt.h regpect to § (Cf COI‘OH&I'Y {0 Theorem 2’ ‘VI, §2) from Wthh 1t fOllOWS that

B has a place of degree <2 and has a place of degree 1if ¢ is even.

of oneé variable of genus g > 1..

- THEOREM 10, L ] braic functions _
- Let B be a.fied of olge d hyperelliptic. Then, given oy

Assume that B has a place v of degree 1 and is not
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place q 7 p of B, there exists a differential w of the first kind of B such that rylw) = '1,
pelw) = Q.

Wehave 1 S U(p™) = d(p) — g+ 1+ 6(p) = 2 — g + 8(n); since g 2 2,
it {ollows that 8(p) > 0; there exists at least one differential %0 which is multiple
of p. Let 8 be the integral divisor of largest degree of which every differential
which is a multiple of p is 2 multiple. Then it follows from Lemma 2 that dgp ) =
d(p) = 1, whence d(8) = 2. If we had d(8) = 2, then it would follow from
Lemma 2 that I(§™) = I{(p™ + 1 = 2, and there would exist a non constant
% ¢ B such that » = 0 (mod 7). The divisor of poles of z would be either por g,
and we would have, by the corollary to Theorem 4, I, §8, {R: K ¢ zA] = either 1
or 2; but then B would be either of genus 0 or 1 or hyperelliptic, which is impos-
sible. Thus we have § = . It follows that there exist differeAtials w; , wg of B
which are multiples of p and such that »y(wn) = 1, () ={0 I either v,(w,) =
0 or »y(w2) = 1, then either & = w; or w = o, satisfies myhpnditions 3 1 pelon} >
0 and »y(ws) > 1, then we may take w = w, + wfNTheorem 10 is thereby
proved. N

From the point of view of algebraic geometyyy” Theorem 10 allows one bo
construct the “normal model” of R, a curve-dhg-dimensional projective space
which has no singularity, and whose field ch!:\rf&tional functions is R,



CHAPTER V
EXTENSIONS OF THE FIELD OF CONSTANTS

§1. SEPARABLE TRANBCENDENTAL EXTENSIONS -

We propose to gencralize for arbitrary extensions the notion of separability,
which is usually only defined for algebraic extensions. To do so, we shall make
use of the notion of Kronecker product of commutative algebras, infroduced
in IV, §4. ' ~

Lesas 1. Let K be a field, and let M be an overfield of K which s algebraic
over K. If M 1s separable over K, then, if L is any overfield of K, the algebra. LM
has no nilpotent element 0. If M is not separable over K, then thexe eists on
overfield L of K such that L ® M contains a nilpotent element #0; Iy be taken
o be of finite degree over K and such that L? © K, where p 1s the ghqrdcieﬁstic of K.

Assume first that M is separable over K, and let z = > be a nilpotent
clement of I ® M (ur e Ly v € M 1=2ks h). Then thg,ﬁe\id M, = K, - Uny
is separable and of finite degree over K, and 7 ¢ L @M . We may write M1 =
K{t), where v is some element of My ; let P(X)be agl.iri'educible polynomial wﬂi::
coefficients in K such that Fu) = 0. If F is\ef degree 7, then 1, v, -*+, "
form a base of M with respect to K, and thetefore also of L & M with respect
to L. It follows immediately that L @B is isomorphic (as a 1ing) With 1?_119
ring L[X]/f, where { is the ideal gefierated in L{X] by F(X). We may write
T = ((v), where G is a polynomiai\with coefficients in L. If & = 9,'1%1311 o
must be divisible by F. Now, shiee » is separable over K, F is not, divisible by
the square of any irreduciplé polynomisal with coefficients in L, and 1t follows
that not only G° but G itkelt/is divisible by F, whence z = 0.

Now, assume that MPisnot separable over K. Then M contains erent
which is not separab{éf bver K. Let again F(X) bean irreducible polynomial with
coeflicients in K $uth that F2) = 0. Then we know that F = Fy(X), where
P\ is a polyneinial with coefficients in K. Let L be an overfield of K in which
the coeffiefenty of F are all p-th powers; we 560 that we may take for 1;)L an over-
field of finite degree of K such that 1?7 K. Then F(X) = @X)Y, Whe{‘e’;;
is & polynomial with coefficients in L. Since G is of lower degree than F, 1615
clear that the element G(v) of L ® M is #0; but we have Gy = 0. Lemma 1
18 thereby proved.
K Kis ol of characteristic p > 0, we shall say that an overfield L of K
18 & radseal extension of K it 7 < K;if Kisof characteristic 0, then we say that
L is a radical extension of K if and only #L=KA radical extension will be
callod fmits 3 1 ic of finice degree. An overfield M of K will be called separable
over X if the following condition is <atisfied: L being any finite radical extension
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of K, the algebra L ® M has no nilpotent element 0. It follows immedately
that every extension of a field of characteristic 0 is separable, and that cur new
notion of separability coincides with the classical one for algebraic extensions.

Lemaa 2. Let L and M be overfields of a field K. If L is purely unseparable
over K, then every zero divisor in I ® M s nilpotent.

Let 2 = Ei‘_l ity (uy € Ly, vy € M) be a zero divisor in I @ M. Since L is
purely unseparable over K, we can find an exponent ¢ > 0 such that
ul” e K (1 £k £ k), whence 3 = Y oy uf™f" ¢ M. Were 2™ 5 0, it would
have an inverse in M, which is obviously impossible since z is a zero divisor.
Lemma 2 is thereby proved. O

CororLary. Let M be an overfield of o field K which 1s sepdrgble over K, and
let L be q finite radical extension of K. Then L ® M is a field and is a finile radical
extension of M; we have [ @ M:M] = [L:K].

S

It follows from the definition and from Lemma 2 that L ® M has no zero
divisor #0. If L = Kfw, -+, u], we have M@ M = Mw, -+, %] and
ui e KC M (1 £k £ r), which proves that L @M is a field and a finite radieal
extension of M. The last assertion of the cor(%é}y’follows from the very definition
of Kronecker products. O

Q"

Lemma 3. Let M be an overfield of a ;ﬁeld K, and let M, be an intermediary field
between K and M. If M is separable over K, then the same is true of My. If Mi
18 separable over K and M over M; > thern M is separable over K.

Let L be a finite radical extension of K. The first assertion follows immediately
from the fact that I, ® 'M;\C L ® M. Now, assume that M, is separable over
K and M over M, . Thenwe have (I ) = (L x,) » . By the corollary to Lemma
2, Ly, is o field aqd '3, finite radical extension of 3, . Since M is separable over
My, L 3 has noypilpotent element 0.

Lemna 4, Le}L and M be overfields of a field K. Asswme that M is purely tran-
scendenial avet K then L @ M has no zero divisor #0, and, the field of quotients
U of tlné ring is purely transcendental over L. If M = K{ziex , the xs being
algebigreally independent over K, then U = Lz )eer , and the elements x; are alge-
brateally independent over L. .

The elements z3! - - - zf» (where %, --- , 4, are any distinct elements of I,
and e, - -+ , e, exponents = 0) are linearly independent over K in M, and there-
fore also over L in L ® M. It follows immediately that the ring L[zi)i.; has no
zero divisor 0. Let u, 4’ be elements of I @ M such that uw’ = 0 ; then we
may write u = > iy, w = o iz , With y&, y4 in L and z;, z in M.
We can find a v >£ 0 in K[z, such that the elements v (L= k2 h),vn (12

k= k) alllie in K[z . Then we have vu ¢ Liz s , 00’ € Llrduer , and (o) (o' =
0. It follows that one at least of vu, v’ 18 0. Since » has an inverse in M and
therefore also in I ® M, it follows that one of u, ¥ is 0. The field of quotients
of Lz , containing L and M, contains U, which proves Lemma 4.
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We shall say that an overfield M of a field K is separably generated over K
if there exists an intermediary field 7 between K and M which is purely tran-
scendental over K and over which M 1s algebraic and separable. A field 2 of
algebraic functions of one variable is said to be separably generated if it i3 sep-
arably generated over its field of constants K; if this is the case, any element
¢ of B such that /2 is algebraic and separable over K{z) is called a separaiing
sariable in J2. Tt follows immediately from Lemmas 3 and 4 that an overfield
M of K which is separably generated over K s separable over K. The converse
of this statement is not true in general. However, we have the following partial
gonverse: -

Lmvoas 5. Let 3 be an overfield of a field K which @ separable over K and which
can be obtained from K by adjunction of o finile number of elements. Then M is
separably gencrated over K. : ¢\

Write M = Ky, -+ , Ys), Where i, -+, Yr BIC elements of M, Denote by
p the characteristic of K, which we may assume to be >0, and by P the field
K{M?) obtained by adjunction to K of the p-th powers of qleﬁ;énts of M. Then
we have M = Ply, - -+ , y»). Let s be the smallest integerstch that M can be
obtained from P by adjunction of s of the elements y,'; assume that M =~
Plyy, -, y. We shall prove that ¢n, <=~ ¥ aré\algebraically independent
over K. Assuming for a moment that this is nointhe case, then there exists an
irreducible polynomial F{(¥1, --+, ¥a) with goefficients in K such that

I F(ylf "",:.?J”a): 0. -
We may assume that F is & polyaolﬂial of the smallest possible degree with

these propertics; let then d be this-degree. 1 << s, wecan write
TS .
ki

F-‘_—;‘ G};(X:l,"',Xc)X’:s
MDD
N \ - - -
Where G4(X, , - - - , Xg)is'a polynomial with coefficients in K in which X occurs

only with exponent§‘ywhich are = 0 (mod p). Thus, G, o ,_'ys) l_)elongs to
the field P; obtad& by adjunction to P of the elements y; for J # ? (because
" 47 ¢ P). Sincedi® ¢ P, but yi ¢ Pi, Wi cannot, satisfy any equation of degree <p
with coeffiefentts in P ; it follows that Ga(g, =~ %) = 0 @sk=sp— L
The polynemial F having been selected of smallest possible degfee, it follows
that F = Gy, @ = 0for k > 0. This being trué forevery ¢ {1 =1 < ), wesee
that we can write F(¥y, »-+, Yoo = H (Y?, Y?), where H 18 8 .polyz{clmial
with coefficients in K. Let L be the field which js generated by adjunction to
K of the p-th roots of the coefficients of H;then

F(Yl,- }Ys) = (J{Yls Tt YS))p:

- where J is a polynomial with coefficients in L of degree P ld.'_ In virtue of ou;-
choice of P as of smallest possible degree, the monomialg in ¥, " ":Us C;B
degrees < d are linearly independent over KinM _a,nd therefore also o ir !
m L @ M. It follows that J(g. - - Ly #E O while (J{#1, ~*- ) = U
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mn contradiction to the assumption that M is separable over K. Our assertion
that g, - -+ , ¥, are algebraically independent over K is thereby proved. Let T,
“be the field obtained by adjunction of 3, --- , ¥, to K; then T5(M*) contains
P, -+ , ) = M, whence To(M”) = M. If M is algebraic over 7, (which,
actually, necessarily happens, although we do not prove it here), then it is also
separable over Ty . For, let N be the field of elements of M/ which are separable
over Ts . Then we know that N D M®” for some ¢ > 0; on the other hand, since
M = TyM"), we see easily that M = TolM®) = T{(M*) = ... = T(M™,
whence M = N. Were M not algebraic over Ty, we could extract from the set -
a1, -+, s} & transcendence base of M over Ty . Adjcining the elements of
this transcendence base to Ty, we would obtain a field T, purely transcendental
over K and such that M is algebraic over 7. Since T, C T, vea'would have
M = T{M?®), and the same argument as above would show that)B7 is separable
over 7. ' O

L W

CoroLLARY 1. A necessary and sufficient condition for q‘ﬁféfd R of algebraie func-
tions of one variable to be separable over its field of constants is for R fo be separably
generated, \Y;

CorouLARY 2. Let L and M be overfields of g&ield K. If M s separable over K,
the algebra L & M does not have any niﬁpotgnl}dément #=0.

For, let & =3 1y wiy (uz € Ly eM;1 £ k £ k) be a nilpotent element of
L ® M. Then z belongs to I ® M where M’ = K, -+, o). Since M’ is
separable over X (Lemma 3), it d8*algebraic and separable over a field 7' con-
taming K and purely transeendental over X (Lemma 3). We have Ly =
+ (Lr)a , and Ly is containgd in a field U (Lemma 4}, whence Ly C U - (where

U is considered as an Igj&b}a over T). Since M’ is algebraic and scparable over
T, U ur has no ni]pote;?ﬁ element 0 (Lemma 1), whence z = 0.

§2:.‘.'RE£|ATIVELY ALGEBRAICALLY CLOSED SUBFIELDS
A subﬁelql.ﬁ\éf a field L is called relatively algebraically closed in L if every
element o,ﬁ(rfvhjch is algebraic over K is already contained in K.

LEW L. Let K be a relatively algebraically closed subfield of o field L. If a poly-
n{n@a\l F(Xy1, »+- , X.) inn letters with coefficients in K is irreducible in

KX, .-, X,
then it is also drreducible in LIX, , - - - y» X

. 1} Let us first consider the case where n — 1. Let G(X;) be a factor of F(X1)
in LIX,]; assume that @ is of degree >0 and has leading cocfficient 1. In a suit-
able extension I/ of L, @ factors into polynomials of the first degrec, say

6%y = 11 &, — 2.

Te=]
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We have F(z,) = 0 (1 £ i £ 1), which proves that the elements z; are algebrale
over K. It follows immediately that the coefficients of G are themselves algebraic
over K. But these coefficients are in L; they are therefore in K. Since F is ir-
reducible in K[Xi}, G can differ from F only by a constant factor, which proves
" Lemma 1if » = 1.

2) In the general case, we chall make use of an artifice due to Kronecker.
Let D be the degree of F;set a; = (D + il 2iga), HHX, -, Xa)

is any polynomial in X1, -+, X, denote by H* the polynomial deduced from
H by the substitution X; — T (1 = i £ n), where T is a new letter. M =
@ ... X% and M, = X{*--- X7 are monomials of degrees <D, then the

equality MT = M3 implies M, = M, . For, assume that Domm et = 2t i
and that e; = f:fori > r (where1 Sr = n). Then

N
N

a,(fr — e) = =D icr aslfs — €. _ '\'\' )
But |f; — ¢:| £ D for every 7, whence P\ '
| e alfs — e) | S DD+ 17 - DE< D + e =,

and therefore ¢, = f,. It follows that, if H is any polynqmia.i of degree = J_D,
then the coefficients of H* are those of H. Call leadhg'cm\fﬁcient of a polynomial
H of degree <D the leading coefficient of H*. We way then write

F=—“ﬂ.G1"'G}:¢.,'“ . .
where @; , -+ - , G are irreducible polyﬂomi@é with coefficients in*L with*leading
coefficient 1 a is the leading coefficient 8. We have F* = aG7 -+ G, from

which it follows that each Gi is a pToduct of irreducible factors of F* in LiT]
with leading coeflicient 1. Now, it’fB‘ﬂows immediately from the first part of the
proof that the irreducible factorghof F* in L{T] with leading coefficient 1 are the
irreducible factors of F* in K|#'} with leading coefficient 1. Thus the coefficients
of each G¥ are in K, and {He same is true of the coefficients of each G, since
Giis of degree =D, Th\s“ chows that F is irreducible in L[X1; -+ Xal-

COROLLARY. Ld&( be o subfield of a field L and let F(X1, - " X.) .bf.% o poly-
nomial in w lettes with coefficients in K. Wemay then factor F tn srreducible poty-
nomials tpJi X, , -+ , Xa) whose coefficients are algebraic over K.

The eletffents of L which are algebraic over K form a field K'; we 02y then
take the irreducible factors of F in K'[X1, -*» Xl

Lenous 2. Let K be a relatively algebraically closed subfield of o field L. Lel

M = Lz, be an overfield of L which can be obiained from L by adjunction of
elements x; which are algebratcally independent over T, Then K{xiier 18 relalively
elgebraically closed in M. : '

Let y be an element of 3 which is algebraic over Rlaer - 1038 clear that we
can find 2 finite number of indices &1, =+ » i, in I with the following properties:
¥ I8 algebraic over the field K{zs, =" , Tigy 804 is in L{zss 07> zi)- Lot
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F(Xy, -+ ,Xw,Y) be an irreducible polynomial in m + 1 letters with co-
efficients in K suck that F(z;, , -+ , @4, , %) = 0. Then it follows from Lemms, |
that F is also irreducible in L{X; , -+, Xu, ¥]; it follows that

F(xfl) e i, ¥)

is irreducible in L{zs, , -+ , 2:,)[Y]. Since y ¢ Ly, , - - - , Ti), ' is of degree
1in Y, whence y e K{zy, »~- , x:).

Lemma 3. Let L and R be overfields of a field K. If every clement of R which is
algebraic over K is purely unseparable over K, then every zero divisor in L ® R 8
nilpotent. ~

Any zero divisor in L ® R is already 2 zero divisor in an algebra of the form
LI/ @ F', where L’ and R’ are subfields of L and R respegtiyely each of which
can be obtained from K by adjunction of o finite numberof elements, We may
therefore assume without loss of generality that L and R can both be gbtained
from K by adjunction of a finjte number of elements{Let R: be the field formed
by the elements of R which are algebraic over X {Dhen, if K is of characteristic
P > 0, there is an exponent ¢ such that RY' <K, For, B is algebraic of finite
degree over a field R, which ig purely transéendental over K, from which it fol-
lows that there exists an ¢ > 0 such that?RQ{R” °) is separable over Ry . It fol-
lows from Lemmas 3 and 4, §1 that .R;;ZR” ° is separable over K. In particular,
K(R{") is separable over K; being alse purely unseparable over K, it is identical
with K. Let Bhe g transeendence'base of L with respect to K, and set T = K(B).
Then we know that T @ R had jho zero divisor #0, and that, if S is the field of
quotients of this ring, then 8\= R(B), the elements of B being algebraically inde-
pendent over R in § (Lemima 4, §1). Let S, be the subfield TR, of S; then it
follows from Lemms3, that 8, is relatively algebraically closed in S. On the
other hand, we hagve%fe C 7. Thus we see that every element of S which is
algebraic over JU purely unseparable over 7. The algebra R, is (Ry) . and is
therefore cogtauted in Sy, (8 and I being considered as algebras over T). Since
L is of finjte‘degree over T, we see that it will be sufficient to prove Lemma 3
in the casé.Where L is of finite degree over K,

Thefield L is then purely unseparable and of finite degree over a field Ly of the
fortyK(y), where y is separable over K. Let 7 (¥) = 0 be an irreducible equation

“with coefficients in K which is satisfied by y. If » is the degree of F, then 1,7, -+ ;
y" " form a base of L, over K and therefore also of (Ig)z over R. It follows that
{Lo)z is isomorphic with R[Y]/f, where f is the ideal generated by F(¥) in the
polynomial ring E[Y]. Let Fy(¥) be an irreducible factor of F(¥) in B [¥] I
K s of characteristic p > 0, then F2*(Y) « K[Y], and is thereforc divisible by
F(Y), which proves that F is (except for a constant factor) a power of Fi.
If K is of characteristic 0 we have E, = K, F\ = F (except for a constant factor).
On the other hand, it follows from Lemma 1 that Fi(Y) remains irredueible in
R[Y]. Let 2 = G(y) be any element of (Lo}e , G being a polynomial with co-
efficients in R. If @ is divisible by Fi, then z is nilpotent. If not, G is relatively
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prime to F1, and therefore also to F, and there exist polynomials U and ¥V with
coefficients in [¢ such that GU 4+ FV = 1, whence «U(y) = 1. Thus we see
that every element of (Lo}x either is nilpotent or has an inverse. This completes
the proof of Lemma 3 in the case where the characteristic p of K is 0. Assume now
that p > 0. If 2’ is a zero divisor in B, we may write 2 = X b Wby, With
wel, vp e B (1 <L S h). Since L is purely unseparable over Ry , there exists
an exponent ¢ > O such that uf* e Ly (L £ k < k), whence 2 = Y uf vl e
AL}z . Since 2" is a zero divisor, #”° ° cannot have an inverse, and is therefore nil- -
potent; Lemma 3 is thereby proved.

LemyA 4. Let R be an overfield of o field K which contains an element y which
is algebraic bul not purcly unseparable over K. Then there exists an overfield Logf K
which is of finite degree and separable over K such that I ® R conioins, a 2ero
divisor which is not nilpofent. ' _ A4

Tt is well known that some power z of y Is separable over K but¢net contained-
in K we take L = K(z). Since L C R, the identification of L a%th a subfield of
L ® R would create confusions in this case. Let us therefors denote by 2’ the
clement z ® 1 of L ® R. The element z is a root of amNrreducible equation
F(Z) = 0 with coefficients in K. If n is the degree of/F. then 1, AR ke
form a base of Lx with respect to B. We have \ : S

0 = F) — F&) = (990,

where G(Z, Z') is a polynomial with coefligiénts in K whose degroe with respect,
to Z'isn — 1. It follows that G(z, 2)z% 0 and that z — 2 is a. zero divisor. On
the other hand, 2 is a simple root of the'equation F(Z) = 0 which 15 of degree >1.
1t follows that no power of Z \{is’divisible by F(Z) in R{Z], which proves that

Z' - 2z is not nilpotent. N\ |

\§3’> COMMUTATIVE ALGEBRAS

Let 9 be & comniytative algebra over a field K. Denote by n the set of mlp_o!;ent .
elements of 9(. Then 1 is an ideal in 3. For, it is first clear that the conditions
Temaek, z f\‘fﬂf’lmply aw e n,'z:c « 1. On the other hand, let T z:nd # be elemepts
of 1. Thegrthete exist exponents ¢ and b such that 2* = 0,y = 0; expanding
(@ — gy b¥ the binomial formula (which is permjssible na c-omutatlve ring),.
We see that each ferm of the expansion either involves z with an expont?nt
24 or y with an exponent =b, whence (z — ¥ H=0andz —yen Wh}Ch _
eompletes the proof of the fact that 1 is an ideal. The ideal 1 is called the radical
of the algebra .

Since the radical n of the algebra ¥ is an ideal in %, we may construct the

tactor algebra 9/n.

9. Then the radical of U/n s {01.

Lemma 1. Let n be the radical of an algebra i
has no zero divrsor #=0.

If every zero divisor in U is nalpotent, then ¥/
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Let z* and y* be elements of %/n, and let z and y be elements of ¥ which
belong to the residue classes +* and y* respectively modulo n. If z* is nilpotent,
let @ be an exponent such that (#*)" = 0. Then 2" ¢ 1, and there exists an expo-
nent ¢’ such that (z)*" = 0; it follows that = € 1, whence #* = 0. Now, assume
that z*y* = 0 and that every zero divisor in ¥ is nilpotent. Then there exists an
exponent m such that z™y™ = 0. If §™ = 0, then y is nilpotent, whence y* = 0.
If ™ # 0, then either 2® = 0 or #™ is a zero divisor and therefore nilpotent,
which implies that = is nilpotent, whence z* = 0.

Lemwa 2. If ihe algebra A is the direct sum of o certain number of ils ideals, say
of My ,--+, W, then any product of an element of A by an elemenlof U; 25 0 of
t # J, and the radical of U is the direct sum of the radicals of Ao , oA .

The product of an element of %; by an element of 2 is in(both %, and ¥; , and
is therefore 0 if 7 5 7. It follows that, if 2; and y; are elements of %, (1 £ i £ h),
then we have (D i; 2 (O 19 =2 0= 20 . In particular, we have, for any
exponent ¢ > 0, (ELl 2)" = Z?_l @i , which prm}e:-i that ZL; z; is nilpotent
if and only if each z, is nilpotent.

Remarg. The formula {3 . z:) (Z?.loy&\*; > %1 2iy; means that, under
the assumption of Lemma 2, ¥ is isomorphie with the {cartesian) product of the
algebras #; , --- | %, .

We now turn to the consideration\df commutative algebras which are of finite
dimension over their basic field, vAn"algebra of finite dimension is called semi-
simple if its radical is {0}. If ¥ is any algebra of finite dimension, the factor
algebra /1 is clearly semissimple.

An lideal aof an algebra ¥'is called minimal if it is »% {0} but does not properly
contain any other ide{{ of % than {0},

I._:EMl\Ll[A‘g. A C{Jm?imta.tive semi-simple algebra of finite dimension is the direct sum
of its minimal J8eals, and these minimal ideals are all Jields.

I A s :&Q‘}ngebra of finite dimension over a field K, then, among all ideals
* {0}' gb?l', we can select one of smallest possible dimension (over K); such an
ldi:?a}jig cl'ea,rly minimal, which shows that, if 9 > {0}, then 9 has at least one
jminial ideal. Assuming 9 to be semi-simple, let @ be a minimal ideal in ¥
Let x be an element 0 of a; then the set ax of elements of the form yz, ¥ € 4, I8
clea:r‘ly an ideal contained in q, and is not, {0} because 2° > 0 (since x would then
be ﬁllpﬁt’el"l.t). 1t follows that ax = . This being true for every « # 0 in a, We
see that ais s field. Let g, -+ , 0, be distinct minimal ideals of %. Then the sum
@+ - 4 m is direct. For, if ¢ 7 7, then the ideal a; N g; , which is in &,
van only. b'e either {0} or g, ; similarly, a, N g, is either {0} ora; , whence a; ) 0; =
{0} This Jmp]ies that z2; = 0if x; ¢ o s % € a7 . Assume then that E'La x =0
With 2 ¢ 0; (1 < ¢ < k); multiplying by ., we obtain z% = 0, whence z: = 0
which proves that the sum ¢, 4 - - - + ax is direct. The dimension of each a; being
Z1, we see th.at h is at most equal to the dimension of 9A; this proves that A
has only a finite number of minimal ideals. Assume now that o, --- , 0 3¢



COMMUTATIVE ALGEBRAS 87

all the minimal ideuls of 3. Each a:, being a field, has a unit element e; ; set
e =3, i Let o be the set of elements x ¢ ¥ such that z¢ = 0. Then o’ is
dlearly an ideal in 9. Were a’ # (0}, among all ideals of ¥ contained in o', we
could find one of smallest possible dimension. This ideal would be minimal and
would therefore be one of ay, --+ , @ . But this is impossible, because, since
e, = 0for ¢ # j, we have ¢ = e = e; # 0. Thus we see that o’ = {0}.If =
is any element of ¥, we have z = ®e + (x — z¢), and, since ¢ = Sohe)e =&
(z — ze)e = 0, whence 2 — ze = 0. Since xe = I i Xei € 0 + -+ + O, We
have 3 = qy + - - + @y . Lemma 3 is thereby proved. '

Lewa 4. Let 30 be a commutative algebra of finite dimension over @ field K. 1{9'
nole by n the radical of N, and represent /1 as the direct sum of fields Zy N\,
%y which are ideals in ;1. Then there exists foreachi {1l £ 15 h) @ homowlarphism
¢:of W onto Z, . Conversely, if ¢ is @ homomorphism of ¥ into any field Z {(con- -
taining K as a subfield) and if o(A) # {0}, then there exists a uniguely detormined
index 1 such that ¢ can be writlen in the form ¥e: where ¥ 8 ar i@aﬂw-rpkim of Z;
into Z. o)

‘Remark. The homomorphisms which are considered i this statement are not
only ring homomorphisms, but homomorphisms of‘gge ras; i.e., if # s any one
of them, we have #{ax) = af(x) whenever & ¢ R\

Let = be any element of ¥. Denote by z* j:hé residue class of z modulo n; we
may then write 2* = i1 2, With i € Z;(I < 4 £ h). If we assignto® the
element z; , we clearly obtain 2 homomotphism ¢; of % onto Z; . Let conversely -
©be s homomorphism of ¥ into a field Z eontaining K. If w e 1, we have {p(w)}™ =
0 for some exponent m > 0, whenice o(u) = 0, since Z is & field. Thus, ¢ maps .
nupon {0} and defines in a a{‘ur’al way a homomorphism o of %/ninto Z. If
o3) = {0}, there exists a.n‘innﬁex i and an element z; € Z,; such that oz # 0.
Iz ¢ Z; j v 4, then 20, whence ¢*(z;) = Osince Zis 8 field. On the other
hand, the restriction o(@*\to 7, is & homomorphism of Z;into Z, and therefore an
isomorphism since £ys a field. Lemma 4 is thereby proved. -

LEMMma 5. Lgc'h and M be overfields of a field K, M being of fintle degree over
K. Oonsideﬁ@g"’M as an algebra over K, construct the algebra My over L, deduced
Jrom MGettending the basic field from K to L. Assume that the factor algebra oj"
My by itsadical n is the sum of b minimal ideals. Then there exists a subfield L
of L, which is of finite degree and separable over K which has the property that My
is already the sum of h minimal ideals. '

Let L, be the set of elements of L which are slgebraic and separable over K.
Then L, is a field and is algebraic and separable over K ‘It follows tha!; My, s
semi-simple (Lemma 1, §1). Let T, == Ty, be the dlstn_mt lmlmmal {deals (?f
M., . Then M., is the direct sum of 71, =~ > T, ,fTOMO which it follows immedi-
ately that M, = (Mag): is the direct sum of the algebras (Ts, - > Lol
which are jdeals in it. Every element of L which 1s alge}aml? over I{D 18 clearly
purely unseparable over Ly ; it follows that every zero divisor in (T;)z is nilpotent
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{Lemma, 3, §2) and therefore that the factor algebra of (7). by its radical n; hag
no zero divisor (Lemma 1). Tt follows immediately from Lemma 3 that this factor
algebra is o field Z, . Making use of Lemma 2, wesee that n = m + - + 1y, ,
and therefore that (My)/n is the direct sum of Z, , -+ , Z;, which are clearly
ideals in it. It follows that A = Jg . Let e; be the unit element of 7 . Then it is
clear that there exists a subfield L’ of L, , containing K and obtainable from K
by adjunction of a finite number of elements which is such that the % elements
e (L £ 1 £ k) already belong to M ® L’. The principal ideal generated by e; in
M3 is eontained in 7'; and has therefore no zero divisor. It follows immediately
from Leroma 3 that this ideal is a field 7; . Since ee; = 0 for ¢ 5., the fields -
Ti, -, T} are distinct. Sinee Z?ﬁl ¢: is the unit element of My» , we have,
forevery2 e Mo, 2 = D b aeie T1 4 - + T} , which proves that My is
the sum of % minimal ideals. >

Ny
§4. DEFINITION OF THE EXTENDED ,FIELD

Let & be a field of algebraie functions of one varia};fé, and let K be the field
of constants of R. Let L be an overfield of K; we propose to associate to the pair
(R, L) a field S of algebraic functions of one vagtable over L. In order to do this,
we first construet the algebra By deduced freny R (regarded as an algebra over
K) by extending the basic field from K toJ Denote by & the factor ring of Rz
by its radical n. Since K is relatively, algebraically closed in R, it follows from
Lemma 3, §2 and Temma 1, §3 that"© has no zero divisor 0. Let S be the
field .of quotients of &. The field B;:'médy be considered as a subalgebra of B ® L;
being a field, it is mapped isontbrphically onto a subfield B* of © under the
natu_ra,l homomorphism of Rponto & = By/n. It is clear that every element of
© can be written as a linkar combination of elements of R* with coefficients in
L; it follows that S < }3 (L). Let z be an element of & not in K, and let 2*
be its residue clags’modulo 1. Then R* is of finite degree over K{z*), from
which it follows™hdt S is of finite degree over L{z*). We shall see that z*
1 transcendental over L. Were this not the case, there would exist a polynomial
F0 Wiﬂ\\’coéﬂicients in L such that F(z*) = 0: there would therefore exist an
exponep?m > 0 such that (Fz)™ = ™ {z) = 0. But this is impossible, because
t]:ae t:elgm.ént-s Loz, -on o, ool being linearly independent over K in R, are
littarly independent over I, in Bz . Thus we have proved that § is a field of’
algebraic functions over .

From now on, we shall identify B with the subfield R* of S, and we shall
thereforg write 8 = L(R) = R(L); we shall say that S s the field deduced
from R by adjoining the elements of L to ils field of constanis. It should be observed
that the notation R{L) may be misleading in the case where R and L are
glven a priori as subfields of some eommon feld Q, since in that case, R{(L)
already represents the subfield §; of Q generated by R and L. However, we shall
prove that, if S; is not algebraie over I, then there exists an isomorphism of 8
with 8, which maps upon itself every element of R and every element of L.
More generally, we shall prove the following result:
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Laama 1. Let It be a field of algebraie functions of one variable, and let L bean
overfield of the ficld of constants K of R. Let © be a field containing K as a subfield.
Assume that wwe are given an isomorphism p of R inlo © and an isomorphism A of
L into @, and that p and ) coincide with the identity on K. Then, if the subfield S of
0 generated by p(R} and ML) ts not algebraic over A(L), there exists an isomorphism
o of R(LY with S; which coincides with p on R and with X on L.

It follows from Lemma 1, IV, §4 that there exists a homomorphism ¢ of
E ® L into 5, which coincides with p on R and with A on L. Since S; has no
zero divisor #0, ¢ maps the radical n of B ® L upon {0} and defines in a natural
way a homomorphism ¢* of & = (B ® L)/uninto 8 ;in view of our identification
of B with a subring of Ry/1, we can say that ¢* coincides with p on B and #ith
\ on L. We shall see that ¢* is actually an isomorphism. Set R = p(&} and
I = ML). Let z be an element of B not in K; then R, is algebraic overK{z:),
where 2, = p(z), and § is algebraic over Lz}, Since 8, is not ‘a.!gebraic over
I1, & is transcendental over Ly . Let y be an clement <0 of €©; $hen y satis-
fies an equation of the form 3P Fw)y" ™ = 0, where each K/is a polynomial
with coefficients in L and F, = 0. Denote by G: the palythomial dediced from
F; by submitting its coefficients to the operation A. Thenif 1 = ¢*(y), we have
i Gila)yl™ = 0. Since Gy 7 0 and 21 s tram@endental- over Iy , we have
Gulz1) # 0, whenee 3, # 0. This proves that ¢* igmj isomorphism. We may there-
fore extend ¢* to an isomorphism o of the field eof quotients R(L} of & into S ;
the image of R{(L), containing R, and Ly and being 2 field, is the whole of Sy .
Lemmag 1 is thereby proved. N o

CoroLrary 1. Let R be o field oj“alg}ébm@'c funetions of Gﬂ@.ﬁﬁ?_‘iab_k; and let L
be an overfield of the field of constanits K of R. Then every automorphism of L over
K can be exiended in a um'gué\&dy to an qutomorphism of R{L) over R.

This follows immediately from Lemma 1.

CoronLaRY 2. Let :Be a field of dlgebmic functions of one mﬂ'able,. and let
L=K <B> be a um}y transcendental extension of K, the elements of B being alge-
braically indepen i1 over K. Then we have R{L} = R{B) and the elements of B are
algebraically i-{aéiependent over 1.
3 of the form R{(By), the elements of B
ith those of B and being algebraically -
over K{(By), it follows from Lemma
o which maps B onto By

We i eonstruct an overfield & of £
being in ¢ one-to-one correspondence W
independent over B. Since € is not algebraic '
1 that R{L) is isomorphic with £ under an isomorphi
ted field of algebraic functions of one

Levma 2. o
1a 2, Let R be a separably gener en R(L) s

wiriable, und 1ot L be an overfield of the field of constants K of B T
separably generated,

We can find an z ¢ B such that B is algebraic

R = K(z, y), with y separable over Kix). We
obviously algebraic and separable over Liz).

and separable over Klx), whence
have Ry = Iz, o), and y is
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TerorEM L. Let R be a field of algebraie functions of one variable and let £ be an
overfield of the field of constants K of B. Assume that one at least of the fields I or B
is separable over K. Then any set of elements of B which are linearly independent
over K remain linearly independent over L in R{L); any set of elements of L which
are linearly independent over K remain linearly independent over It in R{L).

It follows from our assumption that B ® L has no nilpotent element %0
(Corollary 2 to Lemma 5, §1). Therefore R{L) is the field of quotients of E ® L,
and Theorem 1 follows immediately from the definition of & Kronecker product.

CoroLrary 1, The assumptions being as tn Theorem 1, if L is algebraic over K,
then any base of L over K is alse ¢ base of R{L) over B. I L i3 of finite degree over K,
then [R(L}:R] = [L:K], and we have, for any a ¢ L, Spa(ryze = Sperxa, Ne(wyat =
Nyxa. S

N\

The elements of a base of L over K are linearly indepehdent over I in virtue
of Theorem 1. Any element y of R(L) belongs to a fiel@\of the form R(I/), where
L7 can be obtained from K by adjunction of a figite number of elements of L.
Since L is algebraic over K, I/ is of finite degred ‘over K, and it follows from
Lemma 2, IV, §1 that ¥ can be written as golimear combination of elements of
L' (and therefore also of 1) with coefficiedts'in K. It follows immediately that
any base of L over K is also a base of B(L) over R. The other assertions of
Corollary 1 follow immediately. )

~

CoroLiary 2. The assumptionsbeing as in Theorem 1, let also S be a subficld
of B containing K and over which R is algebraic. Then any base of R over S is also
a base of R(L) over S(L). Wedinve [R(L): S(L)] = [R: 8], and, if x is any element of
R! SD&(L)!s{mx = Spp;sil‘;: m{eysy® = Ngsgt. '

N\

If wis an element_,}f S pot in K, then R is of finite degree over K{u) and a
Jortiori, over S.Jigt y, , - - - | Y=} be a base of R over . Since, obviously, R(L} =
(S(LYWRY and s of finite degree over 3, it follows from Lemma 2, 1V, §1 that
every elemenf/of R(L) ean be written as a linear combination of Y, o, Ya With
coefﬁciq in S(L). We shall prove that Y1, "+, ¥y are linearly independent over
S(L) sdssume that 3wy = 0 with u; € S(L) (1 £ i = n). Since § is a sub-
fiell'ol R, one at least of the fields S or L is separable over K (Lemma 3, §1)

anél S(L) is therefore the field of quotients of 8 ® L (cf. proof of Theorem 1).
It follows that we can find an element v 3¢ 0 in S(L) such that vu; ¢ S ® L
(1_ = 7 £ n}. Let {s;};o be a base of 8 with respect to K (J being some infirite
set of indices). Then the elements y:s; (1 < 4 < n, j € J) are linearly independent
over K in R; for if Dol D aiys; = 0, ay ¢ K, then we have
Z?—-T: (E;u @ii%)Y: = 0, whence E,—EJ a:;8; = 0 for every ¢ (becauseyy , -+, ¥n
are linearly independent over S) and therefore a;; = 0 for every 1 and j. It
fqﬂorws that the elements ys; are linearly independent over L in R @ L. On the
other hand, we may write ug =2 jer biss; with by e L (1 < 4 < m, 7 ¢ J), whence
2 Zm bi:8; = 0 and therefore b = 0 for overy ¢ and 7, and vu: = O,
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=01 21 = n). This shows that any base of R over S is also a base of
R{L) over S(72). The other assertions follow immediately.

et B be a field of algebraic functions of one variable, and let L be an overfield
of the field of constants K of RB. Then, although § = R(L) is a field of ajgehraic
functions over L, it is not always true that I is the field of constants of S. Assume
for instance that K = Pla, b), where P is any field of characteristic p > 0,
<hile @ and b are algebraically independent over P. Let R be of the form K{z, 3,
where x is transcendental over K, while y satisfies the equation y = a” + b
Then it is not difficult to see that K is the field of constants of B. Now, set
L = K{a"'”) ; then b is a p-th power in R(L), becauseb = (y — @'z)?, but not
in L = P{a"?, b); it follows that L is not the whole field of eonstants of R(L).
However, we have the following result: ' To &N\

TasoreM 2. Let R be a field of algebraic functions of one variable, and 6.1 be
an everfield of the fleld of constants K of R. Then the field of constantsof \NRCL) 1s
purely unseparable over L. If cither one of the fields K or L s sequgﬁle over K,
then L s the field of constants of B{L). g \

If ¢ is a constant of R{(L), then there exists a subfield LXof L which may be
obtained from K by adjunction of a finite pumber of ‘elefnents ‘.“_‘d “;'hlch is
such that ¢ belongs to R{L") and is algebraie over L FPurthermore, if L is sepa-
rable over K, then sois L’ (Lemma 3, §1). It will bher ore be sufficient to prove
Theorem 2 in the case where L can be obtained from K by adjunction of a finite
number of elements. Let then B be a transcefdence base of L over K such that,
if L is separable over K, then it is also separable over K(B) (Lemma 5, §1).
Construct, the field By = R(K(B)) deduted from F by extending the field of
constants from K to K{B). Making\use of the Corollary 2 to Lemmsa 1 and (?f
Lemms, 2, §2, we see that th 'ﬁl;i% of constants of Bi is K(B). Moreover; it
follows from Lemma 2 thatyif R is separable over K, then R is sepa}xs_l,b}e over
K(B). Tt is clear that R(E) s the field Ri(L) deduced from Ry by adjoining the

elements of L to its ﬁel@~\of constants. Thus we s€e that it will be sufficient to

consider the case w,h{gré I is algebraic of finite degree over K. Then L is purel_y
unseparable OV'BP§~ﬁé1d Lo of the form K(a), with ¢ separable over K. Ifnis
the degree of maver X, then 1, a -, forma base of Ly over K,,L?‘nd ?here-
fore also of¢ E{Lu) over R (Corollary 1 to Thgorem 1). Let e = Z,.—.o ra& he ;
constanfof B(Ly). Denote by a1 = @, "~ * »0» the conjugates of @ with respec'tio
(in & suitable normal extension L' of K containing Lo). Foreach j (15 7= n)
there exists an automorphism o; of L’ over K which maps & Upon & - It follows
from Corollary 1 to Lemma 1 that ¢; &Y be extended to an automorphism
(also denoted by o;) of R{L") over R.Set ¢; = o5(c); then we have

n—1

) ¢ = Z r‘-a‘;' -
A

Since ¢ is algebraic over La , it i algebraic over K, and the same 13 ;t;l.llf of ef;:;ll
¢ . On the other hand, since @ is separable over K, the determinant ol the sys
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(1) (considered as a system of equationsinre, -+ , fn-1) 18 #0. The coefficlents
and the left sides of the equations (1) being algebraic over K, it follows that
¥o, *+ , o 2re algebraic over K, and therefore contained in K, whence ¢ ¢ I, |
Thus we see that L is the field of constants of B{Ly). Since L is purely unseparablo
. over Ly , R{L) is purely unseparable over R(Lo). If ¢’ is a constant of R(L), then
there exists an exponent e > 0 such that ¢” * € R{Ly) (where p is the characteristic
of K, which we may assume here to be >0). Since ¢””” is algebraic over Ly , it is
in Ly , which proves that ¢’ is purely unseparable over L. If F is separable over
K, then R(L) is separable over L (Lemma 2), and so is its field of constants
(Lemma, 3, §1). This field of constants, being at the same time separable and
purely unseparable over L, coincides with L. Theorem 2 is thereby\proved.

CoroLLary. Let R be o field of algebraic functions of one vgmable, and ld L
be an overfield of the field of constants K of R. Assume that ong il least of the fields
R or L is separable over K. Then, #f  1s any divisor of R, wehave d(Conz/z(rya) =
d(a). | - S

It is sufficient to prove it in the case where a isa place p. Let then z be an
element of B which has y as its only zero (LemmiaXy IV, §1). If p* is the divisor
of zeros of x in R, then we have kd(p) = [R: K} Theorem 4, 1, §8). The divisor
- of zeros of z in R(L) is (Conzz(1yp)*, whene®, since L is the field of constants of

- BAL), hd(Conzmina) = [R{L): L{)]. Making use of Corollary 2 to Theorem 1,
this number is seen to be equal to [R:K(z}], which proves our assertion.

- § 5. THEEFPECT ON A PLACE

. Let R..be a field of Lalgeb;'-'aic‘-'fu‘nctions of one variable, and let L be an over-
ﬁe]t_i of His field of constants® We propose to study the places of the field B
which lie above a giveQ(‘pl’ace of R.

TakorEM 3. Let §'b¢ @ place of a field R of algebraic funciions of one variable
and let L be an ﬂ}‘l@?‘ﬁdd of the field of constants K of K. Denole by Z the residue
Jield of p, and-form the algebra =, deduced from (regarded as an algcbra over )
by exle ingz‘the basic field from K to L. Let u be the radical of i, and
let Z, O Za be the distinct minimal ideals of Z./n. Then there 1s o one-to-018
cor'f"gafpmdence between the fields' Z; and the places B; of R{(L) above p. If Zi ¢or
Jeshonds to the place ., then there exists an isomorphism ; of % with & subfield
ofthe residue field 2; of B, and Z; is purely unseparable over ¢i(Z:). If £ €
let €% be the residue class of £ modulon, and set§* = > ¢¢. tee Z:i (1 S 1 5 13
then (¢ $) 18 the image of £ under the natural isomorphism of = info 5. If 2
w semi-sunple, thenoi(Z:) = Z; (1 < § = k), and none of the places B 4s rams
with respect to R. Moreover, in this case, B ® L has no zero divisor #0.

Let 0 be the ring of y. We denote by O the subring 0 ® L of B ® L To

every element 37 x.a, (z; € 0, a; ¢ L) of O letus assign the element D_iwt £

Ef o Whefe £ is the residue class of 2, modulo . Then we clearly Gbmh.l 2
omomorphism  of O onto 2, . Foreach 4 (1 < § < 1), there is 2 homomorpbis™
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4, of 2, onto Z; (Lemma 4, §3); then @4 is a homomorphism of £ onto Z;.
Let 9t be the radical of B ® I; then we know that R(L) is the field of quotients
of (B ® I.)/N. The image of © under the natural homomorphism of B ® L
onto (R ® L)/3 is the subring £’ of R(L) generated by o and L, and £’ is the
factor ring ©/(O N M), Every element of O N N, being nilpotent, is mapped
upon O by 4 (because Z: is a field). It follows that 84 defines in a natural way
2 homomorphism x; of £ onto Z; . Let Q. be the kernel of this homomorphism;
since Zs is o field, s is a prime ideal. Making use of Theorem 1, I, §4, we see
that there is o place B; of R(L) such that P; N O DD, It s clear that x:
maps upon O every linear combination of elements of p with coefficients in L;
it follows that p O, C P: and that B: lies above p. Since Z;:is a fleld, £
is & maximal prime ideal of £, whence O; = £’ N 9P, . It follows thab L'/ Qs
. is isomorphic in a natural way with & subring of the residue field(3y'of P:;
since /)¢ is isomorphic with Z;, we obtain an isomorphism ¢;'of Z: with a
subfield of =;. Using the notation of the statement of Theorem\3, denote by %
an elernent of & which takes the value £ at p. Then 64 n}gpb the element u-1
of 0 ® L upon ¢;, and it follows that ¢:({:) i the residge.plass of w modulo LA
this is also the image of £ under the natural isomoxphis of Z into Z;. We
have not yet proved however that the place . is wniguely determined when
Z;is given, nor that Z; is purely unseparable‘oﬁrer ¢:(Z:). Before we establish
these points, let us consider first the ease wherer2, 15 semi-simple.

Let = be an element of B which admits Jhas its only zero (Lemma 1, :_[V: §1?-
Then we have [R:K(z)] = »y(®)[Z: K] {Theorern 4, I, §8)- Since Zy 1 semi-
simple, we have [2:K] = [Zz:L] = 2t [Z:L] (Lemma 3, §3). On the other
hand, since R is of finite degree."ovér K{z), it follows from Lemma 2, IV, §1
that [R: K(s)] 2 [R(L): L{z)). Fhis we write in the form [B(L): M)l M (@) Liz)],
where M stands for the ﬁelﬂ\f)f ‘Sonstants of R(L). We have [M (#):Lim)] = [M:L]
(Lemma 3, IV, §1). On the,other hand, it By, -~ Py are all th_e places of R{L}
above p (with b’ = hj,@nd if e; is the ramification index of B; “Sth respect to E,
then we have, by Aheorem 4, T, §8, [R{Ly:M{z)] = po(m) - Dims €ifZ5: M), and
therefore 3t JZNL] = DimedZsll I 7 < h, we have [E:':{/} =
[21:04(Z,)] [Z;°E). Therefore, we may conclude from our inequality that #' =,
that ; = M < 7 < k) and thab =5 = oi(Z) 1 =3 = h). Let furthermore

i1 prafJe a nilpotent element of B @ L (s R, a ¢ L); we may assume the

elements’ g, to be linearly independent over K. Were the clements »;, not all 0,

then we could find an element w of R such that the elements we should all be
: s image under 6

i o, but not all in p. Then > e wosa; Would be in £, and 1t 0
would be a nilpotent element of 2y, and therefore 0. On the other hand, it 18
clear that the kernel of 64 consists of all linear combinations of elernents of v
with coefficients in 7. Including the elements ax in & base of L over K, we see
that Y7 . wiua, could be written in the form D fa il with & € i .
%eL(1<k<¢)anda, - ,a lneatly independent over K. This woulld

Imply wey, = 2 (1 £ k < 7), which is jmpossible f:-‘inf:e'(mtel at least of th; % e-
ments wey, is not in p. This proves that, if 3, is scmi-simple, then E® as
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no nilpotent elerment 0. Making use of Lemma 3, §2, we conclude that B ® L
has no zero divisor 0.

Let us now return to the general case. The field L is algebraic over a field T
which contsins K and which is purely transcendental over K. Let I/ be the
field of elements of L which are separable over T. Then I’ is separable over T
and T over K (Lemma 4, §1), from which it follows that L' is separable over K
{Lemima 3, §1). On the other hand, L is purely unseparable over L’ and there-
fore B(L) is purely unseparable over R{L"). Now we prove

Lemma 1. Let B and 8 be fields of algebraic functions of one variable. Assume
that R is a subjield of S and that 8 is purely unseparable over R.-Fhen above any
place p of B there lies only one place P of S, and the residue figldof P is purely
unseparable over that of v. \

If u is any element of S, then there is an exponent g &ith that «*° ¢ R, where
p is the characteristic of E, which we may assume gdbe >0. A neccssary and
sufficient condition for % to be in some place of ‘Sabove p is for v** to be in p,
which proves that there lies only one place B of8 above p. On the other hand,
the p"-th power of the value taken by u at B (@8suming that « is in the ring of R}
is in the residue field of p, which prove€ that the residue field of P is purely
unseparable over that of . QO
This being said, we see that the fmber of places of R{L) above p is equal to
the number of places of R(L') aliove p. But, I’ being separable over K, i
is semi-simple (Corollary 2 to-Ji#mma 5, §1), and our number is therefore equal
to the number of minjmal. $rime ideals in =, . Now, we know (Lemma 5, §3)
that there is a subﬁeld‘ﬁ* of L which is algebraic and separable over K with
the property that 2% is already the sum of 7 minimal prime ideals. Since L is
purely unseparable’over L/, we have L{I/") = I/, L” C I/, and we see that
the numbers of fyinimal prime ideals in ;. , ;... and S:/n are all cqual to &,
which provegsthat there are b places of R(L) above p and that the correspond-
ence Z; . B:is a one-to-one correspondence between the fields Z; and all the
places Qf%@) above 9. On the other hand, if P} is the place of R(L’} below $:,
then, $ince =, is semi-simple, the residue field 3" of $: is generated by adjunc-
) Fiojnﬁf!the elements of L to the image of = under the natural isomorphism of Z
o Z: . The residue field of P, being purely unseparable over =i (Lemma 1)
is also purely unseparable over ¢;(Z.). Theorem 3 is therchy proved.

CoroLLary 1. The notation being as in Theorem 3, assume furthermore that
every element of L which s algebraic over K is purely unseparable over K. Then
above any place of R there lies only one place of R{L).

For, in that case, every zero divisor in T, is nilpotent (Lemma 3, §2) and

?L/'nﬁhftj no zere divisor =0 (Lemma 1, §3), from which it follows that Z:/8
is a field. _
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CoroLLARY 2. The nolation being as in Theorem 3, assume furthermore that L-
is purely transcendental over K. Then there is only one place P of R{L) above p;
B is unramefied with respect to R; its residue field is oblained by adjunction of the
dements of I to the residue field of v, and d(P) = dip).

We know that I is then scparable over K (Lemma 4, §1). The assertions of
Corollary 2 then follow from Theorem 3, from Corollary 1, and from the Corol-
lary to Theorem 2, §4.

CoROLLARY 3. The nolation betng as in Theorem 3, denole alse by Z, the Sreld
of elements of = which are separable over K. Then the subalgebra ()5 of Zz 8
ihe direct sum of h fields Zi (1 < i £ h) such that, for each i, Zi = (Z; /s
is the field of elements of Z: which are separable over L. The filld ¢i(Z7)" then
the field of elements of Z; which are separable over L. ¢\A

We may assume K to be of characteristic p > 0. Since Z, is separable over K,
(Z.): is semi-simple (Lemma 1, §1) and has therefore only 0.ih common with 1.
It follows that the natural homomorphism of 2y onto, X,/ maps (Z.)r 1s0-
morphically onto a subalgebra ¥ of Zi/n. There exigte an integer m > 0
such that the p™-th power of any element o 3 hes in Z,. I 4 =
ek e (o el b e, 1 5§ = 7),then e St ad £ dsin (o),
and it follows that the p™th power of everjnelement of Tz/n is in ¥. Let &
be the unit element of Z, (1 = 1 = h); si!;'ce' " = g;, we have & ¢ ALg =
S fiisin U, withtr e Zi (1 S ¢ 2 H) webhave t; = fese from which it
follows immediately that 9l is the dizect sum of the algebras Yes (1 = ¢ = k).
Sinee e, is o subalgebra of the feld Z; and Z; is of finite degree over L, ey
is itself a field Z7, and it is cledt that the p"-th power of any element of Z; s

" inZ! , which proves that Z4i§ purely unseparable over 77 . Bvery element of Z{

can be written as a linean combination with coefficients in L of products by &
of elements of the field’ (Z_, + n)/n, which is separable over the subfield K of
L; it follows that Z{:is separable over L, and is therefore the fietd of elePlents
of Z; which ar se]:ia.rable over L. The last assertion of Corollary 3 follows imme-
diately from fri}éthers and from Theorem 3.

CORULM;;’&’ 4. The notation being as in Theorem 3, assume furthermore that L is
algebrdficgity closed. Then the notural isomorphisms of = inlo the residue ﬁe{ds
of the Places of R(L) above p are all the distinct ssomorphisms of  into L which
coincide with the identity on K. The number of pluces of R(L) above p s equal
0 12,:K), where =, is the field of elements of = which are separable over K.

Since I, is algebraically closed, the fields Z; and the fields T; (which are of
. L, and the first assertion of Corollary 4

follows from Lemma 4, §3. The second assertion follows from the first and from

a well-known theorem in Galois theory.
R?MARK- In the case where Zp is not semi-s :
o priors take place: either some places of ‘R(L) lying above p are 1&

mi-simple, two phenomena may
mified with
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respect to R, or we may have Z: # ¢:(Z;) for some of the places B . We ghall
show by examples that these two possibilities can actually be realized even
when [ is separable over K. Let K be a field of characteristic p > 0 which con-
tains two elements ¢ and b such that [K{a'”, b'"):K]| = ¢ Set &, = Kz},
where x is transcendental over K, and let p be the unique zero of 3* — ain ;. .
Since 2” —~ ¢ is irreducible in K[z], we have »,(z* — @) = 1. Sct L, = K{a™');
then 2° — g is in Ri{L) the p-th power of z — o'®. If P is the place of R{L)
above b, »p(2” — ) is divisible by P, whieh shows that P is ramified with respect
to K{z). Now, set By = Ry(y), where y satisfies the equation 3 — b+ ) (2* — a).
Then y is separable over Ry, which proves that R, is separable over K. Let g
be a place of R, above p; then it is easily seen that q is a zebd\of y, whence
7" ~ a) = 0 (mod p). This means that the ramificationindex of ¢ with
respect to Ky is = p; since R, is of degree <p over R, , We see\that the ramifica-
tion index of q with respect to R, is p, whence »,(y) = 1} and that the residue
field of q is the same as that of p; this residue ficld is ft-lﬂarefore isomorphic to
the field L introduced above. If Q) is the place of B{E) 9hove q, then the formula
(y(x — a"Y™? = b + y shows that bis a p-thapower in the residue field of .
We conclude that the residue field of O ca ot be obtained from that of g by
adjunction of the elements of L. We observe @lso that, if we adjoin a p-th root
of b to BAL), the place of the field we\Sbtain which lies above O is ramified
with respect to R(L). We shall see later'that this is a general phenomenon: if |
1t happens (in the notation of Theotem 3) that some field Z; is different from
¢:{Z;), then there exist extensiong B of the field L with the property that some
place of R(M) above P; is ramified with respect to R(L).

§6-NFEE EFFECT ON THE GENUS

TawoREM 4. Let B 3}\& Jield of algebraic functions of one variable. Denote by
K the field of constagts’of R and by L an overfield of K which we assume lo be sepa-
rable over K. Let\d'be any divisor of B. If y is an element of R{(L) which is =0
(mod Con 2430), then y can be written. as a linear combination with coefficients
in L of e{év\qmts of B which are =0 (mod n).

Thelelement y belongs to some field of the form R(L,), where I, is a subfield
9f~\§,.\which results from the adjunction of a finite number of elements to K.
The field 7, is separable over K (Lemma, 3, §1). On the other hand, we have
Con g0 = Con B(zp/e(ny (Con grgrpa) (Lemma 3, Iv, §7). Set o =
Con wir(2y0; sincey is in R(L,) and is =0 (mod Con uzn¢10;) When it is consid-
ered 43 an clement of R(L), we see immediately thaty is =0 (mod ay) in B{La)-
This shows that it will be sufficient to prove Theorem 5 in the case where L
cant be obtained from K by adjunction of a finite number of elements. We shall
assume from now on that this is the case, .

There oxists an ntermediary field M between K and L which is purely tran-
scendental over X and over which 7, is of finite degrec and separable (Lemma
5, §1). Let {hy, - .. » -} be a base of L over M. Then b, ---, b, are linearly
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independent over R(ML) (ef. Corollary 1 to Theorem 1, §4}, and they form
o base of (L) over R(M). We write y = > 5 bizs, with 2 ¢ R(OM)
(1 €1 = r}, and we shall prove that z; = 0 (meod b), where b is the divisor
_ Con macnd. Lot g be any place of R(M), and let ¢ be the exponent with
which ¢ enters in b; let u be a uniformizing variable at ¢. Since y = 0
(mod Con x(x(nyb), 1t Tollows immediately that 4 % is integral at every place
of R(L) which lies above g. On the other hand, the discriminant of the base
{br, -, b} is an clement #0 of M, from which it follows that this base ig
imtegral at ¢ (Lemma 2, IV, §8). It follows that 7, (%) = 0(1 £ ¢ £ r). This
being true for cvery place g of R{M), we conclude that the elements z: are
=0 (mod 9). Theorem § will be proved if we can show that each 2; is a linear
combination with cocfficients in M of elements of R which are =0 (nzod: a),
In other words, it will be sufficient to prove Theorem 5 in the’case
where L = K{ty, -+, 1a), with &1, <+, tn algebraically independent over K.
Tn this case, we proceed by induction on n. There is nothing to prevé if n = 0.
Assume that n > O and that the theorem is true for A)="1. We set
Ne=K{, -, tas),S = RN), and we write y = P(x/Q%), where P and @
are polynomials with coefficients in 5, relatively prime teleach other; and where
Q has leading coefficient 1. We shall see that all coefigients of @ are in N. As-
sume for a moment that this is not the case. If we decompose § into linear fac- -
tors in a suitable algebraic extension of B(L), welsde that one af least, say s, of the
zeros of @ in this extension is transcendental bvér N (since, otherwise, t]:”le c?efﬁ-
dients of Q would all be algebraic over Npand therefore contained in N in virtue
of Lemma 2, §2). We set U = (R(E))(5). The element s is algebraic over S
but not over N; since the degree of “transcendency of S over N is 1, it follo'ws
that S{s) is algebraic over N{s &é}}n\d that U is algebraic over L{s). Considering
U a8 a field of algebraic funetions of one variable over L, we see that s — 1s
has at least one zero 2 int U The value i taken by s at 218 transcendental
over N, which is the field‘ef constants of S; it follows that the resid_mnj field of £
is transcendental oyér#V, and therefore that £ is & varizble place with respect
to the subfield S S.of U. In particular, no element of S can have a pole at O.
Since P and Q have their coefficients in S and volts — §) > 0, we see _that
10(Q(t,)) < and that »a(P(t) — P(s) > 0. Since P and 9 are relatively
prime ¢ each other, we have P(s) # 0; but P(s) belongs to (s}, with respect
0 which & s variable, Therefore we have »a(P(s) = 0, whence vo(P) = 0.
This shows that £ is a pote of . Let q be the place of R(L) which lies below 0
then q is a pole of y in R(L), and is obviously 2 varisble place with respect t0
RW ) = S and therefore also with respect to £. It follows that does not occur
I the divisor Con z(na, and we obtain 8 contradiction with the assumptugl
that  is congruent to 0 modulo this divisor. Thus we 'h;we ;;roved that @) € L.
Write P(t,) = D0 tiyu, ys ¢ BIN), whence y = i (0 /QUENY - We thaﬁgl
Prove that g, = 0 (mod Con zam®) 0 = k < d). Let p be any place o v
and let y be & uniformizing variable at p. Then we know that there emst:s e}gcac 5))’
one place 3 of R(L) above p, and that »(®) = 1 (Corollary 2 to Theorem =, ).
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Let @ be an integer such that ve(e™y) = 0 for all k, but va(v "y} = O for at
least one k. If we denote by n; the value taken at P by v "y, then the value
taken at P by v ™% is 3t (t5/Q(t))n: . Now, each m belongs to the residue
field of the place of R(N) which lies above b, and ¢, is clearly transcendental
over this residue field. It follows that »9(v "y} = 0, whence ro(y) = a. Since
ve(y) is at least equal to the exponent &’ with which p enters In a, we see that
@ 2 ¢/, and this proves that each y; is =0 (mod Con z/eivyd). In virtue of our
induction assumption, we may conclude that each Y& 18 representable as a linear
combination with coefficients in N of elements of B which are =0 {mod a).
Since £%/Q(,) « L, we see that y is representable as a linear combination with
coefficients in I of elements of & which are =0 (mod a). Theorew 5 is thereby
proved,

N
£ X
2N\

CoroLLARY 1. The assumptions being as in Theorem 4{we have
I(COD ;m;(L)a) = l(ﬂ) B N

Set I(e) = L, andlet vy, -+, z; e { eIemen{;s.faf’R which are linearly inde-
pendent over X and which are =0 (mod ) \Considered as elements of R{L),

P, cer, opare =0 (mod Con gya(rya) apnd\dre linearly independent over L
(Theorem 1, §4). It follows from Theoretn 6 that every element of R(L) which
is =0 (mod Con g/a¢1y0) is a linear comibination of 2;, - -+ , z; with coefficients

in L. Sinee L is the field of constapts'of R{L) (Theorem 2, §4), the corollary is
proved, OB

COROLLARY 2. The assumplions being as in Theorem 4, a necessary and suffi-
cient condition for an elemiont ¥ € B(L) to be expressible as a linear combination
of dlements of B with coufficients in L s for y not to have any variable pole with
respect to RB. N\

The conditions isblearly necessary. Conversely, assume that it is satisfied.
Let Py, --- ‘Ba\ be the poles of . Then each P lies above some place p; of B, and
it ig ¢lear ‘tl;a\ﬁ, for » large enough, we have y = 0 (mod Con zeny(p -+ 8 )-
It then.ici]iéws from Theorem 5 that ¥ is expressible as a linear combination of
el'emen:ts of B with coefficients in I,

REMARK. The conclusion of Corollary 2 remains true if, without making any
(a3stmption on L, we suppose that the field R is separably generated.
_ In order to prove t is, we proceed as follows. Let 2 be a separating variable
In &, and let (a:):z be a base of I with respect to K, I being some set of indices.
If z is any element of B, we construct the clement % = 8D rmyruayz of L)
If Py is a place of L{x) which is variable with respect to K{x}, then any place
¥ of (L) above Ty is variable with respect to R; for, were this not the case,
then P N B would be a place of R and therefore P N K{z) = P N K{z) would
be a place of K{z), which is not the case. Thus we see that no place of R{(L)
ahove Py is a pole of 2, from which it follows that B, is not a pole of %, ; In
other words, u, has no variable pole with respect to K(z). The divisor of poles
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of u, consequently divides a divisor of the form Con ¢y 1(=Mts , Where 11,15 an in-
tegral divisor of K{z). We can find a polynomial V, 7 0 with coefficients in K
whose divisor is of the form 1™, where qo is the pole of = in K{xy and m.
some integer 20. Then the only pole of V(z)u, in L{(z} is the pole of z, and
we may therefore write Vo(z)u. = U.(z), where U is a polynomial with co-
officients in L. Sinee V. has its coefficients in K, we have an expression. of the
form . = 2 r aupi(e), with ¢f2) « K{z). Tt is clear that ¢i(r2) = vpi(z) for
every i ¢ [ and v ¢ K(z). If {z1, -~ , za] s & base of R with respect to K{z},
we may express every z ¢ B in the form S 1 vz;, Whence ¢i(z) = D vpi(zs).
For each j there are only a finite number of indices ¢ for which ¢:(2;) = 0; 1t
follows that there are only a finite number of indices « for which the funetion
¢ 18 not identically 0. Making use of Lemma 1, II1, §5, we see that there.exists
for each 7 ¢ I an element v, ¢ R such that ¢iz) = Sp wrxayse for eve{:y‘z\e R,
and this is equal {in virtue of the Corollary 2 to Theorem 1, §4) to Bp ety iz -
There are only a finite number of indices 7 for which y: % 0; set L = > i A -
Then we have Sp aiuyua(y — ¥z = Oforevery 2 ¢ R. This iorpiula applies In
partieular to 21, - -+ , 2 , which form a base of R(L) with\xghpect to I{z) (by
the Tesult quoted above), from which it follows that outformula is still valid
~ for any z ¢ R(L). Since R(L) is separable over L(x},'\it\fdllows from Lemma 1,
IT1, §5 that y = 3, which proves our assertionyX ) :

TaEoREM 5. Lt B be a field of algebraic ftgnéi{iﬁhs of one variable, a'mfl let L be
an overfield of the field of constants K of RaElen the genus g of R(L)_ is af most
equal to the genus g of R, ond the equalifpg = g’ s true whenever L us separable
over K, -~

We first consider the case Whefe }A is separable over K. Let a be a divisor of
R such that d(q™") > 2¢ — 2.and'd(Con san0”) > 2¢° — 2. Then we have, by
Riemann-Roch’s theoremsyfn) = —d(&) — ¢ + 1, Z('Cicn mAlE) =
~d(Con mr(na™?) — ¢ &h1. The left sides of these fwo equalities are equal to
each other in virtue of the Corollary 1 to Theorem 5. On the other hand, we have
(e} = d(Con R;EQ;uf in virtue of the corollary to Theorem 2, §4. Tt follows
that g = g’ . “

Let us I}O‘«:t-*i:'-ofxsider the general case. The
which iS’pfﬁ'ély transcendental over K. Let
which are Separable over M. Then M is separable over M, and M, OverlK
(Lemma, 4, §1), from which it follows that M is separable over K (Lemmg; 3, §1).
On the other hand, L is purely unseparable over M. The genus of R{M) is equal
% g, as was already proved. This shows that it will be ’suﬂﬁclent 1'30 prove The-
orem 6 under the supplementary assumption that L is algebraic and purely
unseparable over K. Let then L/ be the field of constants of R(L), and let {0:) et
be a base of L' over K, I being a set of indices which may be finite or mﬁmte.
Let i, - -+, Q, be ¢ linearly independent differentials of JP}}‘? ﬁI:St- Lind of R(L?,
If p i any repartition in R, then Cosp mz(z)¥ is a repartition 1 }_B(L}, ﬁnd}:‘;e
may write 2.(Cosp ranl) = 3 i D)0 with wa(r) ¢ K. It 18 clear that

field L is algebraic over a field M,
M be the field of elements of L
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each wg is a linear function on the vector space of repartitions in E. Let ¢ be
the unit divisor of E; if r = 0 (mod ¢), then Cosp rz(zy7 is congruent to 0 modulo
the unit divisor of B(L), whence w(x) = 0 for all 4 and k. On the other hand,
if z is the repartition z attached to an element x of R, then Cosp zeip t is the
repartition za(zy attached to « in R(L), whence again w:(r) = 0 for all 7 and k.
This shows that each wy is a differential of the first kind in B, We shall see that
only a finite number of these differentials are <0, Let § be an integral divisor
of It of degree d > 29 — 2; then it follows from Theorem 2, II, §5 that every
repartition 1 of R is congruent modulo b to a repartition of the form zg,
¢ & B, Making use of Lerama 1, II, §4, we see that we can find d_repartitions
%, -+, L which are =0 (mod 5™) such that every repartitien 1’ which is
=0 (mod b™) can be written in the form 3% c,1; + ', witKs” = 0 (mod ¢)
and ¢; e K. It follows that every repartition t of B can beswritfen in the form
To + 2iay + Y, with 1Y = 0 (mod ¢, whende -Qu(Cosp want) =
e ¢A%(Co8P »/r(n1;). We can find a finite subset, Iyef Psuch that the quan-
tities Qu(Cosp a/mny t;) ean all be expressed as linear, Combinations of the ele-
ments a; for ¢ e Io with coefficients in K; it is then elear that wy = 0if ¢ I, .
This being said, if we had ¢/ > g, then we could find a differential Q of the first
kind of £(L) such that © > 0, 2(Cosp me(yO= 0 for every repartition 1 of B.
We shall derive a contradiction from thelexistence of such a differential. Since
£ 7 0, there exists a repartition y of R(Ly such that Q) # 0, and we may even
assume that y(B) ¢ R(L) for all plages' s of R(L) (i.e., we take a repartition y
in the sense of the first definition™ef this concept, as given in II, §4). For each
place P of R(L), denote by py the repartition which assigns 3(P) to P and 0
to every other place. Theu{mly & finite number of the elements Q) are #0,
and Q(n) = 3 g (). LeCP'be a place such that Q(yg) > 0. Since L is algebraic
over K, it follows eas:il}\\from Lemma 2, IV, §1 that () can be written in the
form - asws , with ®; ¢ R. Let p be the place of R below 5, and let r: be the
repartition of B whith assigns z; to p and 0 to every other place. Since P is the
only place 0?(-:' R@) above p (Corollary 1 to Theorem 3, §4), we have ny =
i @i COSP 2/n( 1y L+ , whence Q(g) = O which brings the desired contradiction.
© Theorem{6\is thereby proved. :
It will'be observed that the strict inequality ¢’ < g may be true even in the
easewhere £ is separably generated over K.



CHAPTER VI
EXACT DIFFERENTIALS

§1. THE DIFFERENTIAL dz IN K(z)

Let R be a field of algebraic functions of one variable. Qur purpose in this
chapter is to ussociate to every element z of R a differential dz of the field & and
to show that the differentials obtained in this manner have the formal properties
of the differentials one is used to handling in the caleulus. ~

We shall first consider the case where the field R is of the form K{z), K being
any field and = transcendental over K ; in that case, we shall define in thissgetion
the differential of the particular element z. We shall pass to the general case
later by making use of the notion of the cotrace of a differential=y”

In II, §5, we have determined the differentials of K(z) whef'K is the field of
complex numbers. They were the expressions udr, where(’s was an arbitrary
element, of K{z). Taking » = 1, we obtain what we shall call the differential of .
For any u, udzx is obviously the product of u by the diﬂQential dz. We have seen
that the order of udx at a place p which is not the\pole of = is »,(u), while the
order of udx at the pole p( ) of T is vy (¥) — 2L Moreover, if £ is the repartition
which assigns ©* to p(=) and 0 to every other place, then i is easily seen th“—gt
(de) (x) = — 1. It follows immediately frout $his that the divisor of dzis ({0 )™

Now, let X be an arbitrary field, and%et B = K{(x), where z is transceqdenta[
over K, Then 2 has a single pole p{ @)\in 2, and p(=) is of degree 1. Applying tllle
theorem of Riemann-RRoch and ,Iiéihember'mg that K(z) is of genus 0, we obtan
U(=)P) = dl(p())) +5b+ a((n(=))™) = 8((p(=)™) — L, where
3((n(=))"?) is the dimensioh of the space of differentials which are multiples of
(p())7%. Thus we see that.there exists a differential » > 0 of B which is multiple
of (3(w))™. The degfer of blw) being —2 = d((p())”), we have bw) =
(p(«))™. Let ¢ hafhe repartition which assigns 2 “top() and'O to every qther
Place; if q is anyidivisor, let X(a) be the space of repartitions W}chh2 are mul:tlpies.
of 0. Then it follbws from Lemma 1, 11, §4 that ¥(p(c))/%((p(e)) ) 18 of dimen-
sion 1 oyemF, The repartition. x is in X(p(=)) but not in E({n(=)) ?; it follows
that every«) in %(p()) may be written in one and only one way in the form
O + v, witha K and ' ¢ £((p())). We have wuly) = 0; were ax(x) = 0,
then w;(y) would be 0 for every multiple 1 of p(w), and w would be wultiple of
(p(20)Y™, which is not the case. If b = wi(r), weseb® = —h o5 @ mthenach'f-
ferential of R which js a multiple of (p(e)) * and for which w(z) = —1.The dif-
ferential w is uniquely determined by these two conditions. For, if E,gdlfferen’tlal ®
Satisfies the same conditions, then o — « is a multiple of (p(=))” aod (& ~ )
{(¥) = 0. Tt follows immediately that (&' — @) () = O for every rep_aa:txtlon Y
€ (n(w)), ie., 8(e’ — ) is a multiple of (p()) ™ The degree of th? divisor of a
differentisl 0 of R being —2, which is < d{{p(= ™), we see that o' — @ = 0.

1 :
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We shall denote by dz the differential w whose existence and uniqueness we
have just established. We shkall determine more explicitly dz by eomputing its
p-components (dz)’ for the various places p of B (cf. II, §7). It will be sufficient
to compute (dz)’(u) for every u e R.

Let first p be a place # p(= ). Then there is an irreducible polynomial f ¢ X [=}
which admits p as a zero of order 1; we may assume that the leading coefficient
of fis 1, and f is then uniquely determined. It is well known that every u e B
may be represented in the form

(1) =24y gy

f f ~
where v is a rationa! fraction in which the denominator is nog divisible by f~
whence »,(v) = 0;¢1, -+ , ¢ are in K[z], and each is either{(or of degree <d»

if d is the degree of f. Since p does not occur in d(dz), %e have (dz)’(x) = 0
(Lerama, 2, II, §7). Similarly, if q is a place distingtfrom p and p(=), then
vo{g:f ") 2 0, and therefore (dz)*(gf ™) = 0. We hate by Lemma 1, II, §7) 0 =
(dx) (gf ) = 2oo(d2) (g ™), the summation being extended over all places 1.
Therefore, (d2)*(gf™) = —(d2)* (g ). Ll be the degree of g; (if ¢; # 0);
then vy (g ™) = 4d — v; . Since v; < dythis number is 22 if 7 > 1, whenee
ther (d=)" (g ™") = 0.8et gy = D 1) axz®sthén xgy — @g_1f is either 0 or of degree
<d — 1, whence »(gf — Y 2 2. Tt follows that (d2)'(pf ™) =
“(d-’c)ﬂw)(ﬂd—ﬁc_l) = ¢z . Thus e have obtained the following result: '

LmMa 1. Let f be an irreduciblbelement of K2}, of degree d with leading coefficient
1, and let 9 be the 2ero of f inJXx). Let u be an element of K{z}, represented in the
Jorm (1) above, where »,(0) &0 and g, , - - - , g- are elements of K[x] of degrees <d.
Then (dx) (u) 1s the cofigient of 2~ in 0.

The simplest case\igthe one in whichd = 1,ie,f = 2 — ¢, a ¢ K. In that
case, the p-adig-Gempletion of K(z) may be identified with the ficld of formal
power series % — a with coefficients in K (I1I, §3). Our result can then be
formulated s Tollows.

LEMLh"Z Let a be an element of K, and let B be the zero of x — a i K{z)- If

Y=z~ 0 (e K, r S h < w0 ) is any element of the p-adic completion
) -of K(z), then (dx)* () = e, .

Let us also consider the case where p, without necessai'ily being of dogree 1,
nevertheless has a residue field T which is separable over K. In this case, we shall
consider a repartition  for which »,(r) = — 1, and we shall give another expres-
sion for the value of (dx)* (). If £ is the value taken by x at p, we have & =
K(£), and £ is a root of the equation f(X) = 0. 8ince £ is separable over K, we
have f'(£) % 0 (where f' stands for the derivative of the polynomial f). On the
other hand, since »,(x) = ~1, we have 7o{f1(p)) = 0; we shall denote by ¢ the
residue class of Fr(p) modulo p. With this notation, we shall prove that

) (de)* (1) = Spejx f_’%'
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Write 1(p) = g{z)/f(x) + v, where ¢ iz a polynomial of degree <d, while »,(v) =
0. Then ¢ is equal to g(£). On the other hand, we know by Lemma 1 that (dz)*(z)
is the coefficient of 2*™ in g(x). Formula (2) will therefore follow immediately
from

Lewvs 3. Let = be a field which is obtained from a field K by adjunction of an
element £ = 0 which is algebraic and separable over K. Denote by f(X) the charac-
leristic polynomial of £ with respect to K and by d the degree of f. Then we have

Ek . -1
8 s =0for0=k<d=-1 8 = =1
Prx gy T e 1)
In & suitable extension field of 2, the equation f(X) = 0 has ¢ distinct zeots
hi=E -, . Set : .
X) R,
() = L e d.

(X — £)f'(8) ~\
Then g, is a polynomial of degree d — 1, and we have gi:), 1, (k) = O for
i#i 10 <k <d— 1, the polynomial h(X) = 2 5q'ehg«(X) is of degree
<d — 1, and we have hu(t:) = & for 1 = 1 < d, fromavhich it follows immedi-
ately that 7, (X) = X*. Setting X = 0, we obtain B \\

g1 (-1 i R0,

JO) Sp2ix iy = { 0 H\DEXksd-1

X)) = X° + Y40 an XV, we havej{ﬁj = gy and £ = el
whenee Spr <& '/f'(£) = 1. Lemmafig' and therefore also Formula (2), are
thereby proved. Q -

Ir order to make our investiga“l:%n of dx complete, we stiH have to chnsider the
b(=)-component (dz)* ™ of di,\We may write any element v of K(g) in the form

{3) 1 =Zakxlf‘-‘{;ﬁ.‘_1$_1+ﬂ (Witha,_han,---,arinK)
k=0 \ ¥
.t\.. . -

where » is such ¢ E ey @) 2 2.HEZ0, then we shall see t%mt (de)*® (F) =
0. We have (da™® " = -2, (dx)"(z"), the summation being extended to all
Places » > p(%"). None of these places being & pole of either or dx, we have, for
each of them, (dz)’(z) = 0, which proves our assertion. Remembering that
(@) () = 1 and that b(dz) = (p(w))™, we obiain

Lemma 4. An element u of K{x) being represented in the form (3),
2,we have (dx)* " (w) = —as .

with V(e (’U) 2

§2. TRACE AND COTRACE OF DIFFERENTIALS

Let R be a field of algebraic functions of one variable, and let § be an oven'ﬁe]d
of finite degree of R; then we may also consider S as a field of algebraic functions

of one variable. We propose to associate to every differential 2 of S a differential

@of B, D ¢ constants of B and S respectively. H r
¢ enote by K and L the fields of co et that the function

18 any repartition in R, set w(r) = Spr/x@(Cosp »is )
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w defined in this way is linear. If § = xz, with 2 ¢ B, then Cospgsr = 15,
whence w(z) = 0 (cf. IV, §7; the reader is reminded that xz and z5 are the reparti-
tions attached to z in B and S respectively), If @ = 0, then w = 0 is a differ-
ential. If not, let % be the diviser of 2, and set A = H%‘B“{ ), Denote by p a place
of 8, by B, - - , Ba the distinet places of S above p, and by ¢; the ramification
index of B with respect to B (1 = ¢ = h). Let a’(p) be the largest integer such
that e’(p) = a(P.) 1 £ 4 = h). Then a'(p) = 0 except for a finite number of
places , and ¢ = J[,p° ™ ig a divisor of R. Let 1 be any repartition of K which
is =0 {mod o). Then, for every place p of B, wehave »,(r{(p)) = —a'(p), whence,
if P is a place of 8 lying above b, re({Cosprist)(F)) = —ead’(p) = —alP},
where ¢ is the ramification index of § with respect to E. ¥t\follows that
Q{Cosprssr) = 0, whenee w(x) = 0. This proves that o is a differentizl of E. The
differential « will be called the trace {from 8 to R) of , and will be denoted by

Bpsat. % O
It is clear that, if ¢ and &' are differentials of S, theg: N

(1) Bpsz{@ + Q) = Spssf +~~$ﬁs;kﬂ'—

On the other hand, if & ¢« R, we have D '

@ Spsat = L8P0,

For, let gbe any repartition in R. Ther’a (Spmxﬂ)(;) = Bpyx((2Q)(Cosprst)) =
Bp r2({Cosprrary)) = (Spgyald) (a::}f whlch proves our assertion.
If T is an intermediary ﬁeld hétween B and S, we have
(3} Spsmﬂ = Spra(Bpy ).
For, let M be the field gfbcnstants of T, and let t be any repartition in R. Mak-
ing use of Lemma, S\N §7, we have
(SPTM(SPSMQ))(I) = Spauyx((Spssr2){Cospssrt))
N = Bpa/a(H{Cosprys(Cospay r)})

\\“ \ _ = Spu{Q(Cospr/sl)) = (Spsmﬂ)(E),
and th;s proves our formula,

\g \TH'EORE\L[ 1. Let R and S be ficlds of algebraic functions of one voriable. Assumé

hat S 1s an overfeld of finite degree of R. Denote by @ a differential of 8, by p &
place of R, and by B, - -+, Bu the distinct places of S above p, by K and L the
Jields of constants of R and S respectively, by =,(p) the field of elements of the residue
field of v which are separable over K, by =,(.) the field of elements of the residue
field of P; which are separable over L (1 < i £ h). Then we hove

13
res, Sps;p = Zl Spz, @z, TESB, .
-

. REMsrk. In this theorem we assume as usual (¢f, IV, §1) that L contains K;
it follows immediately that Z.(p) is & subfield of Z(B,).
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Let v be any clement of Z.(h), and let ¥ be the element of the p-adic comple-
tion of B which is algebraic over K and which belongs to the residue class ¥
modulo p (cf. Theorem 1, ITT, §3). Denote also by and 8 the two sides of the
formula to be proved. We have Spe,/zay = (Spy2)(c), where ¢ is the reparti-
tion of B which assigns 7 to p and 0 to every other place. By definition of the
trace, this is equal to Sp 1/ x(R(Cospzrat)) = E?.a Spux(ﬂqs"(?)). Since ¥ is
algebraic over L and belongs to the residue class v modulo B, , we have o¥iy) =
8pz, a2y ress, 2, whence

Spy Q™ (F) = Spr.gorxy 16582 = Spr,ovxly Spz.omm resg. ).

Thus we see that Sps,eyxay = SpPz.m/x8y. This being true for every ¥ ¢ Z«p)s
it follows from Lemma 1, III, §5 that we have « = 8. Theorem 1 is thereby
proved. AN

To the operation of eotrace for repartitions we have just assoeiaftﬁd‘an opera-
tion of trace for differentials. Conversely, to the operation of trace for reparti-
tions, we shall associate an operation of cotrace for differel\ntials. However, in
s0 doing, we shall limit ourselves to the case of pairs of fields of algebraic func-
tions of one variable which have the same field of comstants. It is only later
(after we have defined the exact differentials in a,ft?fbrary fields of algebraic
functions of one variable) that we shall be able‘t&deﬁne the operat_ion_of €o-
frace in the case where the fields of constants afe dlistinet.

Let then R and S be fields of algebraic fusietions of one variable which satisfy
the following conditions: S is an overfield of 'R, R and S have the same field of .
constants K. The field S is then of finitedegree over K. Let & be any differential
in B. If we set L ' :

'\ﬂ(t]) = w{SpsaY)s

we clearly obtain a linear fGnction Q@ on the space of repartitions y of S. We shall
prove that @ is a differpitial. If 1 is the repartition ¥s attached to an element y
of 8, then Spg/ey = (Sps/ey)s , Whence Qlys) = 0. If Sis not sepaa:able over R,
then we have seen i 1V, §7 that Speay = 0 for every repartition yin S, whence
2 = 0. Now, aglmhe that S is separable over E and that & = 0; we denote as
usual by dlw)the divisor of w. Let % be any place of S; we denote by P the
Place of \below P, by a(p) the exponent of y in d(w), by e(¥P) the ramification
index of B with respect to R and by m(%) its differential exponent. If % is any
element of the P-adic completion S of S, we have €°(x) = ﬂfbgsl)sfﬁu)_: where B
Iepresents the p-adic completion of K. Let ¢ be a uniformizing variable at p
R T se() = —e(Ba(p) — m(B), then n( ) z_—m(P) whence
"(Spyat"™u) = 0, and therefore »,{(Spyru) = —aly), and ©°(w) = 0. On the
other hand, there exists an element z of S such that »w(z) = —m(®) — L,
nBpysz) < 0. Since vglf) = —m(P), W have 7, Spmez) Z 0, whence

"wSpgzz) = —1. The exponent of pin d{w) being a(b)‘,VWet;an find an ilerz;n:
w of B such that = — — 1, «’(w) # 0. ¥¥e el see easily ta
at »y(w) a(p) 0wz psar) ) =

m(we(Speae)™) — —e(Balp) — m(P) — 1 and that
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o'(w) # 0. Let D be the different of S with respect to E; then the number
e(Pa(y) + m(P) is the exponent of P in D Cong/sd{w). Thus we see that,
whether S is separable over R or not, 2 is a differential of 8, and that, if 8 is
separable over E, the divisor of @ is D Congsd(w).

The differential @ is called the coirace of w, from B to S, and is denoted by
Cosprs w. We have proved the following result: :

Treorem 2. Let K and S be fields of algebraic functions of one variable; assume
that S is an overfield of R and has the same field of constants as RB. Lel o be a dif-
ferential 70 in R. If 8 s not separable over R, then Cospgaw = 0. T 7 S s sepa-
rable over R, then Cospg/sw s a differential #0 of S, whose divisor 18 Con zs0{w),
where D represents the different of S with respect to R. A

o\\

CoroLrary 1. The notation being as in Theorem 2, the cg:ﬁ*m;:e from B 1o S of
any differential of the first kind of R is a differential of gh'e, first kind of S.

CoRroLLARY 2. Lei the notation be as in Theorem 2,‘931,& assume that S is separable
over It. Denote by g and G the genera of R and S respe_g:fia}ely. Then we have G — 1 =
[$:R)(g — 1) + (1/2) deo). N

i
We have (Theorem 6, 11, §6) S
\ 26 — 2 = d(b(CospR;sw)} ="d(Conpsd(@)) + d(D),
and this is equal, in virtue of Lengina 1, IV, §7 ta [S:R](2g — 2) + d(D).

- CoroLLARY 3 (THEOREM OF" :I;:UROTH). Let R be a field of the form K{z), where

K is a field and = tmnscend{ntal over K, and let T be an intermediary field between

K and R, distinet from B USelf. Then T contains an element t such that T = K{&).
L™

It is clear that R j}algebraic over T. Let U be the field of elements of & -
which are sepaxable“over 7. If U s R, then R is of characteristic p # 0, and
the degree of zlover U is a power p" of p. Bince x is purely unseparable over U,
we have 27 @. On the other hand, the divisor of poles of #™ in R is of degree
p”, whﬁp}@f by the corollary to Theorem 4, I, §8, [R:K{(z*")] = p". Since
[B:Ulwx"p" and K(z”) € U, we have U = K(2*"), and U is of genus 0. Apply-
ipg Corollary 2 to T and U (instead of R and S) and observing that the dif-
ferent of U with respect to 7 is integral, we have —1 = [U:Tl(g — 1), whereg
is the genus of 7. It follows that g = 0. Since R has a place of degree 1, the
same is true of 7' and T is a purely transcendental extension of K (ef. 11, §2).

Let B and S be fields of algebraic functions of one variable such that S is an
overfield of B and has the same field of constants as R, Tt is clear that, if w
and ’ are differentials of R, then we have

(4:) CDSpR;S (w + &J’) = COSpR;.gw -+ COSpH;sw’.

if « is any element of R, we have

(8) Cosprrstw = & Cosprsw.
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For, let 1 be any repartition in S. Then (Cosprszw)®) = (zw) Spsay) =
oz Spays)) = w(Spaaay) = (Cospmsw)ay) = (v Cospa;sw)(h), which proves
" qu assertion. On the other hand, if T is an intermediary field between E and S,
then we have

6) Cosprysw = Cosprs(Cosparw)-

For if y is any repartition in S, we have (Cosprsw)}(®) = «Bpysl) =
o(Spra(Sps)) = (Cospayw) (Spsray) = (Cosp r1s{Cosparw))(y), which proves
our assertion,

If o is a differential of & and z ¢ S, then we have

0 Sps/xz Cosparsw = (Sparar)e. TN

For, let r be a repartition of E. Then (Spyzz Cospesw)(t) = (2 Cospassw)
(Cospayst) = (Cospasw)(z Cospasl) = w{Sps/alz Cosprsst)), and this i
equal (by Formula (1), IV, §7), t0 w((Spse2)t) = ((Spmz)w)(z),,,wbﬁ’h proves
our formula. AN .

Taporem 3. Let B and S be fields of algebraic functiafn’st of one variable;
assume that R is a subfield of S and that E and S have the soane field of constants.
Denote by w a differential of R, by p a place of R, and BQ%YB a place of 8 above .
Let ¢ be the ramification index of B with respect & BT the residue field of P is
not separable over that of b, then resy Cosprysw < 0."If the residue field of P s

separuble over thal of p, then we have ress Cospajpte = € T€Sy 0.

Denote by Z(p) and (%) the residue fields of p and P respectively, by Z:(p)
and 2,() the largest subfields of Z{y) and (%) respectively which are sepa-
rable over the common field of cedstants K of B and 8. We form the p-adie
completion B of K and the B- se-completion 8 of §; we may eons-lder Rasa
subfield of 8. Let Z.(p) and Si(F) be the subfields of K and § respectively which
contain K and which are(8ystems of representatives for 2,(y) and Z(B) (-
Theorem 1, III, §3). Déndte by @ the differential Cospsse ©; and let """I})e_ any
element of Z,(P).Jf “#4s the representative of in Z.(%), we bave & (@) =

Sor,n/x 1"'1'855355-.~®"deﬁnjtion of the cotrace of & differential, this is also
equal to «°(Spipw). Now, @ is algebraic over K, and therefore als? over k.
‘ sble normal extension of R}

“The conj]lgqte\s of @ with respect to K (in & suit, !
are also ednjugates of @ with respect to K, and are therefore algebraic and sepa-
rable over K. It follows that Spa#d is algebraic and separable over.K, and. there-
fore contained in Z,(p). We know that the residue class of Spyri 15 € Sprmem®
(ef, Formula D), IV, §8), This residue class 15 O if E(‘B) is ﬂ?t se?arable over
3(p), whence, in that case, Spya@ = 0, QP = 0, and, this being true for
every u ¢ 3,(B), rese @ = 0. Assume now that 2(P)is E“‘»‘I’_?»‘«I'i"‘b]le over Z(p)- Letg;
be the degree of Z(B) over Z(p), and let & be an algebraically closed overfiel

of K containing E(‘S). Then there are f distinct isomorphl.sms of Z(P) mto
K which coincide with the identity on Z(p). Since (%) 1 p1:|_1‘e1y unsepa-
Table over ,(P), these igomorphism.s induce f distinet isomorphisms of Z(B)
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into K which coincide with the identity on Z,(p). Conversely, any isomorphism
of Z,(P) into X which coincides with the identity on Z,(p) can be extended
to an isomorphism of Z(%), and, since Z(p) is purely unseparable over Z{p),
the extended isomorphism coincides with the identity on (). It follows that,
in the ease under consideration, we have [Z(B):Z(p)] = [Z.(B):3,(0)] and
Sprwem¥ = Spr,mz,m#. We eonclude that 8Pzt Tesg @ = e’ (),
where 7 is the representative of Spr,mz.mu in Z(b). But &'@) =
Spz, i/ x((Bpz, @iz, i) Tesw) = Spr,@y/xt res, w. Thus we see that @ (@)
Bpz, @/ xtle res, w), which proves that ress @ = ¢ resyw. Theorem 3 is thereby
proved. ~

]

§3. THE DIFFERENTIAL df IN AN ARBITRARY FIBLD

We are now able to accomplish our purpose of associa.pin?g fo every element 2
of a field B of algebraic functions of one variable a difierential of the field B.
This differential will be denoted by {dx)z , or, if no donfusion is possible, by dz.

Let K be the field of constants of K. If » is not i‘n?K , it is transcendental over
K, and the differential (dz) x¢;y has been defined 30 §1. We set in this case

a\/
(dz)r = CDSP::@@}CZI)K(:).

This definition clearly does not confliet™with the previous one in the case where
R = K{z). If x is an element of K, we define (dz)z to be the zero differential.
Any differential of B which iz ofuthe form (dx),, for some z ¢ R, is called an
exact differential. A\

Turorem 4. Let R be a field of algebraic functions of one variable, and let K be
the field of constants of R.AF R is not separably generated, then every exact differenticl
i R is zero. If R ig séparably generated, and x « R, a necessary and sufficient con-
dition for {dz)a to He =0 is for z {0 be a separaling variable in B.

Let 2 be ang element of B. If R is not algebraic over K(z), then z is in K

and {dx)» P O TR s algebraic over K(z), it follows immediately from Theo-
rem 2 tly?\t\(dm) z1s 70 if and only if R is separable over K(z).

’?;J\.EgiﬁEM 5. Anexact differential of a field R of algebraic Functions of one variable
Jasao residue 0. If B is of characeristic p > 0 and ¢ R, then, for any integer
m/> 0, the residues of 2™ (dx)x are all equal to 0. Let K be the field of constants
of R, and let v be a place of R. Then, if z 5 0, res, z~*(da)z is equal o 0 if the
residue field of p 1s nol separable over K and is equal 1o v,(x) if the residue field of ¥
15 separable over K.

We may assume that = is not in K. Making use of Formula (5), §2, we have
2 (dz)p = Cosprayt’ (da) xizy . Let p(0) and () be respectively the zero and
the pole of # in K(z); then o (dz) x» has no pole outside $(0) and p(=). On the
other hand, (0) and p({) are of degree 1. If ¢ ¢ K, then (2" (dz)xs)’ " (¢) =
((d2) =)™ (c2™); making use of Lemma 4, §1, we see that this is equal to
fhs —landto~cifh = —1. It follows that res,. @ (dr) xin is 0 if kb 5# —1
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and —1if b = —1. It follows from Theorem 3, IT1, §5 that res,m & (d2) s is
0ifh % —landis 1 if A = —1, Theorem 5 follows immediately from this
and from Theorcm 3, §2.

Lisns 1. Let R be a field of algebraic functions of one variable; denote by K
the field of constants of R and by © an element of B not in K. If B is separable
over K{z), then there are infinitely many places of B whose residue fields are sepa-
rable over K and which are not ramified with respect to K{z).

Tirst we observe that there are infinitely many essentially distinet irredueible
polynomials 7(X} with coefficients in K such that f'(X) » 0. For, if K is infinite,
we may take the polynomials f(X) = X — @, a ¢ K, while, if K is finite, it is
well known that there exists for each integer n > 0 an irreducible polynoxﬁial
of degree n with coefficients in K, and the derivative of this poiyuomi\al‘is =0
because K is perfect. This proves that there are infinitely many plages of Kz
whose residue fields are separable over K. Only for a finite nupber of these
places p, can there exist a place p of B above p which eitheris ramified with
respect to K(x) or has a residue field which is not sepgmble over that of po
(Lemma 3, IV, §8). Lemma 1 is thereby proved. v _

This being said, let v be a place of B which is nobJamified with respect to
K{z), whose residue field is separable over K, andéwhich is not a pole of z. Let
7(z) be the irreducible element, of K[x] with l¢ading coefficient 1 which admits
B as a zero. Since p is not ramified with rgsﬁect o K(z), we have »{f) = L.
Let 1 be a repartition of B such that vo(z{p)p= —1. Then vo(fr(p)) Z 0; denote
by ¢ the residue class of f£(p) modulod We shall prove the formula

ey (d:’c‘);;(;”) = Bpz/x J;’LE’E_)

where 2 is the residue fields o}‘\p and & the residue class of & modulo b.

* Let 1” be the repartit{éia“ which assigns £(p) to p and O to every other place.
Then (da)p(r) = (dz)aly’) = @z}t Bprimta r'). Let w be the place of K(z)
below p; then it is"elear that the p-component of Sparxal’ 18 SP (p), Wh‘ere
Sp’ denotes thq%aéé from the p-adic completion of R to the pe-adic complc:tzon
of K(z). Let Dybs the residue field of 1 , and leb go be the residue class of £80'0)
modulo 5, { Then it follows from Formula (2), §1 that (d2) sty Epasxta) L ) =
Spzyx @/f’ (£). On the other hand, since p is not yamified with respect to Kz
and 7 Sp’r(p) = Sp'fe(p), it follows immediately from Formula (1), IV, §8

that ¢y = Spys, ¢. Sinee f/(£) ¢ o, we have

b =8 S M—fg— =szfx'7¢_—;
(dz)a(z) = Bpzux | PPZ/20 f1(z) 7

which proves Formula (1),

Let us consider more specifically the case wh
f =2 — g, with a ¢ X, and the p-adic completion
the field of formal power series in z — ¢ with coeffi

ere p is of degree one._Tl:Een
7 of B may be identified with
cients In K; on the other
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~hand, R coincides with the p-adic completion of K{z), whence Sp'y = y for
every y ¢ R. Making use of Lemma 2, §1, we obtain

TarorEM 6. Let R be ¢ field of algebraic functions of one variable and let K be the
Jield of constants of E. Assume that R is algebraie and separable over K{x), where z
18 some element of R. Let 9 be a place of degree 1 of B which is not ramified with
respect {o K{(x) and which is not a pole of =. Let v = 2 iy ez — a)f (e ¢ K,
r 2k < w;r < 0;0is the value taken by x at p) be an element of the p-adic com-
pletion of B. Then we have (da)*(u) = ¢ .

CoroLLaRY. Let the notation be as in Theorem 6, and let y be any element of R.
Lety = 2 pubi(t — a0V (e K, s S k < w; s < 0) be the expansion of y in
the p-adic completion of R. Then we have res, y dx = b_, .

N

Let ¢ be any element of XK. Then we have (y dz)*(¢) =Nd2){ey) = cby,
which proves our assertion. )

Still assuming R to be separable over K{z), the divisor of the differential
(dr)z can easily be determined. Let ¢ be the pole of #in K{z); then the divisor
of (d2) k) is 17°, Making use of Theorem 2, §2 wé see that d((dz)z) = b7,
where b, is the different of R with respect o K{(z), while 1 = Conggyat. It
is clear that n is the divisor of poles of z. T];Q‘s‘we obtain

TuEOREM 7. Let R be a field of algebrgie }unctions of one variable and let K be
the field of constants of R. Assume thgt B is algebraic and separable over K{z),
where ¥ 15 some element of B. Thenthe divisor of the differential dz in R is b0,
where b, 1s the different of R witlrrespect to K{x), while n s the divisor of poles of =,

CorOLLARY. The notatiot{?}eing as in Theorem 7, the poles of dx are to be found
among the poles of x. \&

The assumptions b;‘ng the same as in the previous theorem, the fact that
dx # 0 allows us’to represent every differential w of B in the form u dz, with
% ¢ K. On thé other hand, since B is separable over K{z), we may write
R = K{z, yo,®ith some y, ¢ R. The characteristic polynomial of 3, with respect
to K(z) 48Nof the form ¥™ + D aue)(ae(x))"¥™* where Gy *++ , Gn BIC
polynomials with coefficients in XK. It follows easily that the characteristic
polyfipial F(Y) of y = ao(x)y has its coefficients in K [z], i.e., that y is integral
oyer K[z). Now, assume furthermore that the only poles of w (if any) occur
among the poles of z in R. Then we shall see that % is of the form
% = Glz, y)/F'(y), where @ is a polynomial in two letters with coefficients in K,
while F” is the derivative dF/dY of F. It is clear that y is integral over the ring
of any place py of K{z} which is not & pole of x; it follows that the only poles of
¥ in R occur among the poles of z. If % is any exponent =0, the poles of Yo
are among the poles of », from which it follows immediately that the only
pole (if any) of 8pe/xy 3% is the pole v, of z in K{x). Now we have (dz)r =
Cospetmz () xe, and it follows from Formula (7), §2 that Spwxis ¥ =
(Spr/xin y’“ u} (dx) 1) . Since (dx) xey has no zero, we conclude that Speiz(s ¥ ¥
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nas no pole outside p,, and therefore lies in K(z]. Our result will therefore follow
from : :

Lemma 2. Let S be a field, o a subring of S containing 1, and B anoverfield of S
which s obiained from S by adjunciion of an element y which is algebraic and
separable over S and whose characteristic polynomial F(Y) with respect to S has
its coefficienis in o. Then, if u € R, a necessary and sufficient condition for the
elements Spgys ' (0 £ &k < ) fo all be in o ts for u o be expressible tn the form
v/ (), with v e ofy].

Tf % is the degree of F, the elements 1, g, -+, ¥ form a base of K with
respect to S, and we may write uF'(y) = ey witha;e SO0 <i<n— Q
0 <k < n— 1, we have, by Lemma 3, §1,

yi-‘i-n-l—k '\..;\
2 = ik, _, . ¥y O
(2) ar = Spassy™ Pu— 2. 6 Spais ORI

klign—1 LA

N

Now, we prove by induction on I that Spss y'/F'(y) e o for {JU = 0. This is
true for I < n — 1 in virtue of the result quoted above. AsSime that it is true
for some 7 2 n — 1. If F(¥) = Y" 4 2jabYS% we have g =
— 32 by from which it follows immediately/fsince b; e p)- that our
assertion is true for I -~ 1. From this, we conclu@e’iﬁlmedjately that the condi-
fionsa; e 0 (0 < § < n — 1) imply Spars 3 ¢ WO = k < ). Conversely, as-
sume these last conditions to be satisfied. Then o, = Spris v € 0, and ff“"
mula (2} shows that the conditions ax € 0 fofd < k £ n — 1imply a; €0, which
shows that ag , - - - , @._; all belong to o> Tamma 2 is thereby proved.

We have established \

TREOREM 8, Let R be @ ﬁeld\igf&gebmic funciions of one variable of the form
Kz, ), where K is the field of constants of R, x s transcendental over K, cm:d ¥
algebraic and separable soutr K(a). Assume furthermore thal the characteristic
polynomial F(Y) of y itk respect fo K(z) has its coefficients i Klz]. Lot w be @
differential of B wl{éﬁg\}ias no pole outside the set of poles of =. Then « can be ex-
pressed in the _fm:q}z\ '

m\ o= G(x! y)
O T®

ii{here G ?I§ a polynemial with coefficients in K.

§4. DERIVATIONS OF FIELDS
Let R be a separably generated field of algebraic functions of one x{ar:ns_xble,
and Jet = be a separating variable in R. Since dx # 0, every d}ffe.rentlal in B
¢an be expressed in the form u dz, with u e B. This applies In P‘f“t‘m‘_ﬂm 'to the
differential dy of an element y ¢ R; we propose t0 find oub how it is possible to
compute v in terms of x and y. In order to do this, we have first to study the
Botion of derivation of a field.
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Let B be a field and 8 an overfield of R. By a derivation of R into S is meant
a mapping D of R into S which satisfies the following conditions:
(1) - ' D + ) = Dy, + Dy
2) _ D) = (Dydy: + yu(Dy)

The first condition means that D is a homomorphism of the additive group
of R into that of S. It follows immediately that we have
3) Dy — y2) = Dy — Dys (1, 92 ¢ R); D(0) = 0.

We have D(1) = D(1.1) = 2D(1), whence D(1) = 0. By indy2tion on kb, we
deduce easily from (2) that D(1*) = ky* Dy for all & = 0. Assuthing that y, , s
are m R and y, = 0, we shall see that N,

fOI‘ h, Y ¢ K.

'\
) D (_y_) _ Dww — puDys) >
: Y y; X "\ ;3

For, if z = yu” , we have ;, — zy, , whence Dy"{?\= (D2}ys + 2(Dys); solving
for Dz and replacing 2 by its value, we obtain'the desired formula, '

If D is a derivation of B into S, and % ¢ §)then we see immediately that the
mapping 4D of R into S defined by (uﬂ\)‘(y) = u(Dy) is again a derivation.
From this we conclude that the de;'iir%mtions of B into S form a vector space
over S, ' ™

A derivation of a field E into Eiiséelf is called simply a derivation of B. Let
Dy and D; be derivations of B} then the operation D = [D:, D] defined by
Dy = Dy(Dyy) — Dy(Dyy) igagain a derivation of B, It is obvious that D satisfies

condition (1) ahove. 01'1,‘ thie other hand, we have
D{yy,) = D'z((Dlyl)?h\\‘i' (D)) — Di((Dandy: + (D))
= (1)‘2~({)1%))y2 + (Do Dygps)y — (D1(Day)yys — 1 {Dr(Dayz))
o = (Dy)y: + 9:(Dip)s
A& .
which P@es our assertion.

I,‘Eﬂi.ifa L. Let D and D' be derivations of a field B into an overfield S. Assume
thdb.D and D comncide on some subset E of R. Then they coincide on the subfield F
B generated by the elements of E.

For it follows J'mmediately from Formulag (1}, (2), (3), (4) that the set of
elements i ¢ R such that Dy = D'y is a field,

- LEMMA 2. Let D be g derivation of a field B into an overfield S, and let z be an
element of S which is algebraic and separable over B, Then, 4 is possible in one and
only way fo extend D o @ derivation of R{2) inlo S.

Intr.oduce an indeterminate Z. Let H(Z) = 376 cZ be any polynomial with
coefficients in B; then we set (DGYZ) = 370 (De) 2. Tt iseasy to see that,
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i G and G' arc polynomials with coefficients in B, then D(G + &) = DG + D,
DEE) = (DA + G(DG"). Assume that it is possible to extend D to & deriva-
tion D' of R{z) into S. Then we have, for ¢ ¢ B, D'(c) = (De)d" + ked D'z,
whence DY {(G(2)) = (DGY{z) + (&) I¥z, where & is the derivative of ¢, Apply
this to the charaeteristic polynomial F(Z) of z with respect to B; since F(z) = 0,
we find 0 = (DF)(z) 4+ F'(z)D'z. Since z is separable over R, F'(z) is 0, and
the preceding formula determines complete D'z, Making use of Lemma 1, we
gee that, if the extension I¥ exists, it is unique. .

To prove the existence of D', we observe that any u ¢ R{z) may be written
in one and only one why in the form u = G(z) where G is a polynomial with
coeflicients in R of degree smaller than the degree n of F. We then define Dlu

by the formula . -
KO
ry (DFY2) ~ N
pu- o -G ew O

and we have to prove that IV is a derivation which extends D)First, if u ¢ R,

then ¢ = w is of degree 0, and D'u = Du, which shows t}ffsg}. the mapping D’
coineides with D on R. Now, let % and u, be elements of B(z), with v = Gi(2),
W = Gaofz), G, and G being polynomials of degrees &g~ with coefficients in E.
Then u;, + w4 = (G, + G)(2), and Gy + Gais of degree < n. Since

DG, + G = DG, + DGs, (G ¥ G = Gi+ G,

we see that D' (uy + w) = D'wy + D' .Now, if we consider the product us ,.
It 18 equal to (G1Ge)(z), but GhGe may be. ofdegree = n. To find the correct repre-
sentation of wyus , we divide GiGe by (F:GiGe = F@ + Gy, where Gy is of degree
<n, and we write wur = Gi(2). ’Sinie F{z) = 0, we have

(DG = (DENR) M + e (DO ~ (DIEQE),
GDD G e + 0 Gi(Z) — F Q)
and it is easy to verjfg{l??fat

2 &

D) = 066 — D2 6

{ ¢\: ¢
s equal &\Cﬁ’ul)ug + u;(D'us). Lemma 2 is thereby proved.

 Levma 3, Assume that a derivation D of a field S maps a subfield E
uself, and that S s of finite degree over E. Then we have, for any y € S,

SpsaDy = D(Spsfxy)-

inee the formula is trivial if this
of § which is normal, separable,
he distinet isomorphisms of
B. Then we have
o a derivation

of 8 into

~ We may assume that § is separable over E, &
18 not the ease. We can then find an overfield 8%
and of finite degree over B. Let e (1 £ k S n)bet
8 with subfields of §* which coincide with the identity on
Ssny = 22 july), SpanDy = Liafu(Dy)- We can extend D%
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(which we also denote by D) of S§* From the fact that j, is an isomorphism, it
follows immediately that the mappings 7D and Dj, are derivations of S into
S¥, Binee j; coincides with the identity on R, j.D and Dj; coincide with each
other on R, and therefore also on 8 by Lemma 2. Thus

SpeaDy = 2 D(iy) = D(Spsny).
k=1

Levma 4. Let R be a field of algebraic functions of one variable. Let b be a place
of B and let D be a derivation of R which maps into iéself the Jfield of constanis K of
R. Then there exists an indeger s such that v(Dy) = »,(y) — s for ally ¢ R.

Let 2 be a uniformizing variable at p. Set s = max {0, —uy(D2x)} (with the

convention that s, = 0if Dz = 0). f f(z) = 3 vy aa® ig dnrielement of Kfz],
‘then D(f(z)) = 3 04 (Dan)e® + (00 kaw® ) Dz, whende

#W(DEEN)) = —s. O

H y is any element 0 of K{z), we may writej¥ &) 2P®0f(x) /g(z), where f and
g are polynomials with coefficients in XK, and g0 = 0. Observing that the for-
muls D2* = "Dz is true even if » < 0, %&have

Dy = niparo i e Gur DE@NE) — [@Di@)
9l=) g* (@)

whenee v,(Dy) Z »,(y) — & — L ¥y ¢ K{x). Now, let y, be the zero of z in K(z),
and let {21, --- , z,} be a bagk'of R with respect to K{x) which is integral at
o . Denote by 9, --- , pdhe places of R different from p which lie above Po.
Then we ean find an clempent u of R such that v,(u) = 0, wmp() >0 (1 =4 £h)
(Corollary to Theoretn 3, T, §6). Any element y # 0 of R may be written in the
form y = z"4y"y Nghere 7 is some integer and

:ﬂ:\ ' wy) =0, )20 . 1gish
We have 0
O Dy Dz Dy Dy’
:’\;‘.; . ?—Vh(y)-x—'{'?'?—}——y_?
s}{heﬁee vw(Dy) Z »(y) + min {»,(Dz/2), vo(Du/u), »o(Dy’)}. We may write
y = Z:-l yizi 5 “‘ifh ?J’l YTt yn in K(x}} then we ha‘re

voolys) Z 0 (124&n)

Thus Dy’ = 370 Dydz + Sopayi(Dz). We have v(Dy;) = —s — L
whence

m(Dy') z Miigign {—% — 1+ vy(2:), (D)}
Lemma 4 is thereby proved.

Lemvs 5. The assumptions being as in Lemma 4, denote also by B the p-adic
completion of R. Then D can be extended o o derivation D of B which is continuous
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{Le., if 2 ¢ B is the limit of @ sequence (zx) of elements of E, then Dz = limpoD2s).
This extension is unique.

If a sequence (z,} of elements of B converges to an element z ¢ R, then the
sequence (Dz,) is also convergent. In fact, vp(2apn — %) increases indefinitely
with n, and the same is therefore true, in virtue of Lemma 4, of vy(D2wy1 — Daz,).
Moreover, the limit limg . Dz, depends only on z, not on the sequence (2a),
for, if z = liMype Tp = liMpoe 2w , then »y(zn — Z,) increases indefinitely with
n, and the same is true by Lemma 4 of vo( Dy — Dz,)}, whence limu.. Dz, =
Yim,., Dz, . If we sot Dz = lim,.. Dzs, then D is a mapping of B into itself.
If (x.) and (¥.) are convergent sequences of elements of R, then we have

limase (2 4 ¥a) = LMoo @ + 1iacs s A\

" and a similar formula for the product; it follows immediately from this thab D
is a derivation. Using the same notation as above, we have (by Lemma’4),
o Dz) = limane, #(D20) 2 litgs #5(@a) — § = m2), — s where 8,13 ali integer
which does not depend on z. If z is the limit of a sequence (2.)50k elements of

% we have lim,_., vy{z — 2,) = ©, whence Jimae vo( Dz 7fﬁzﬂ) = o, and
Dz = lim,., Dz, . It is clear thai D is the only continuous mapping of R into
itgelf which extends D. e N\

N, .

Lot us consider in particular the case where the residue field = of pis separable
over K. Let then z be a uniformizing variable afj»We know (UL, §3) that K
contdins a subfield I; isomorphic with Z (under an isomorphism which maps
upon themselves the elements of K) and thafﬂ may be identified with the field
of formal power series in z with coefﬁciqnté in %, . Since 2 is separable over K,
the restriction of D to K may be extended to a derivation Dy of 21, and it follows
from the uniqueness assertion in Lefnina 3 that Dy is the restriction of D t_O Z1,
which shows that [ maps Z; i t'q"if]self. Trom this and from the continuity of

D, we deduce immediately the formula

[} . y 0“ =0 m .
(5) D (Z c,‘,@k) = Z (chk)xk + (kE kck:vk'_l)D:c.'
I‘='I",:‘ k=r =r
. and a derivation Dy of this field.

Conversely, let t\fé be given any field 2
Y, let g 8 Y nol & with coefficients in

Construect the field' R of formal power series in & sym
21, and lepybe any given element of E. Then the formula

) D (Z Ckfck) == Z (chk)xk + (kE kckx"'l) W
Ll k=1 ) =7
(Where the ¢,’s are arbitrary elements of 21) defines a_deri*»:ation D of. E. For,
fety = Zr:‘* e’ and yf = E;;w cra” be elements of B. It is first obvious that
Dy + ) = Dy + Dy’
On the other hand, we have gy’ = Z?,H,.e;o:‘, where e; is given by

v
e = Zk‘”""! Cilr -
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We have Dier = D iiimi (Dici)er + 2 s ex(Dices) and
le; = Ek+k’=! (r'ﬂck)fl::' + Zk+k’-l ck(k'c;::),

from which it follows that D(yy’) = (Dy)y’ + y(Dy’). It is clear that the deriva-
tion D extends Dy and maps z upon u.

Lunmma 6. Let R be a separably generated field of algebraic functions of one varia-
ble. If © is @ separating variable in R, there exists a unigue derivation of I which
maps every constant upon 0 and x upon 1.

- Let K be the field of constants of B. We may consider the field K{z) as a sub-
field of the field 8 of formal power series in z with coefficients in K. We have
just seen that there exists a derivation D of § which maps eveiy ‘element of
K upon 0 and z upon 1. Making use of Formula (4) above, we(See that D maps
K{x) mto itself. Since R is separable over K{z), the restriction,of D to K{z) may
be extended to a derivation D of R with the required propéries. The uniqueness
of D follows immediately from Lemamas 1 and 2. \

The derivation whose existence and uniqueness a;[-e" asserted in Lemma 6 is
called the derivation with respect to z in R. N4

Lemma 7. Lef R be a separably generated field b}"algebmic functions of one voria-
ble, and let D be a derivation of the field of eonstants K of R. If z s a separating
- variable in R, then D can be extended to @ derivation of R which maps z upon 0,
and this extension is unigue. '

We use the notation of the pl;qbf of Lemma 6. From what we saw above, it
follows that D may be extended“to & derivation D of S which maps z upon 0.
As in the proof of Lemma & e see that D maps K(z) into itself and that the
restriction of D to K{z) may be extended to a derivation of R. Here again, the
extension is unique in virtue of Lemmas 1 and 2.

\\(R5. DERIVATIONS AND DIFFERENTIALS

We are now ’éblé to solve the problem which was proposed at the beginning
of §4. Thgsi’.ﬁiltion will be provided by '

THEOH.'I;\{ 9. Let B be a separably generated field of algebraic functions of one
variable, and let x be a separating variable in R. Then, if y is any element of R, we
kawe dy = (D.y) dx, where D, is the dertvation with respect to « in R.

It y is not a separating variable in R, then we know thas dy = 0. Let in that
case F(X, Y} be an imeducible polynomial with coefficients in K such that
F(z, y) = 0. Then Fiz, ¥) is an irreducible polynomial with coefficients n
K{z). Since y is separable over K{z), we have (3F/3Y)(x, ) 7= 0. On the other
hand, z is} not' separable over K(y), for, were this the case, R, which. is separable
over K{(z}, and, a fortiori, over K(z, y), would be separable over K{y); it follows
that (0F/8X)(z, ¥) = 0. Now, it is easily seen that 0 = D.Fiz, ¥) =
(0F/8X){w, y)Dsx + (2F/3Y)(z, ¥)D.y; we therefore have D,y = 0, whence:
dy = (D) dx.



DERIVATIONS AND DIFFERENTIALS ' 117

Let us assume from now on that x and y are separating variables. Making use
of Lemma 3, 1V, §8 and Lemma 1, §3, we see that there exist infinitely many
places p of R which satisfy the following conditions:

1) the residue ficld of p is separable over K; .

2} v is not ramified with respect to either one of the fields K{z) or K{};

3} pis not a pole of either x or y. . :

We shall prove that, if p is any one of these places and £ a repartition such that
»(1) = —1, then (dy — (D) dz)"(r) = 0. When this will be done, Theorem 15
will follow immediately. For, were the differential dy — (Day) dz = 0, then it
would follow from Lemma 2, II, §7 that each place p which satisfies the condi-
tions 1}, 2, 3) would oceur with an exponent >0 in the divisor of this differential,
which is clearly impossible. \

Let then p be a place which satisfies conditions 1), 2), 3). Denote lzy\E the
residue field of p, by £ and 5 the residue classes of x and ¥ respectively modulo
b, and by f and ¢ tbe irreducible polynomials with coeﬂicient's"i';l‘the field of
constants K of R and leading coefficient 1 such that f(§) = Py g(m) = 0. Since
p is not ramified with respect to either K{z) or K{), we hama

n(f(@)) = nigly) = 1. O

Let B be the p-adic completion of R. Since Z is'sfép;rabie over K, B contains
a field =; containing K and isomorphic with 2y and R may be identified with
the field of formal power series in f(z} with coefficients in = (I1I, §3). Moreover,
D. may be extended to a derivation D of R which is defined by the formula
DS, slf(@))) = (D)) (Enme ksilf))' ™) (where sy ¢ 21, 7 = k< ).
On the other hand, it is clear that D f(z) = f(x}, where ' is the derivative of
the polynomial f. If we expand.g{y) in E, the expansion will be of the form
0) = 2f(@) + Doro su(f@Niler, s € 2, with s # 0. It folfows that p is not
a pole of D.g(y), and thafrthe residue elass of Dug(y) 3 ¢f (&), where { Is the
residue class of 2 modulol 9. But we have Dug(y) = ' () Dy, and, since 7 18
separable aver K, g’(qz:;é 0; it follows that wig' ) = O whel_lce v.,,(D,,y). = 0.
Moreover, the residué class of D.y modulo p is & (€)/ ¢ (7). This being said, let
1be a repartitiq@jﬁh that »,(1) = — 1, whenee »(f(z) p) 20, Va'(g(y)t(ﬁ)) =
0. Let o and yehe the residue classes of f(2) £(p) and g(¥)z(v) respectively modulo

®; then we :Iix&xie, by Formula (1), §3

o
(dz)’ () = sz;xf—f(o—{),(dy)'(:) = Spzx Tt
We have ((D.y) dz)’(z) = (da)’(Dsy)1), and the residue class "deulo p of
F@)(Dayye(p) is tef (£)/4' (n), whenee :
(D)d)(®) = Spaix 5% |

On the other hand, we have g(y) () = G@/F@)f@(s), and s0)/f2) be-
longs to the residue class ¢ modulo p. It follows that ¢ = {w, Whence

(Day)de)’ () = (@)’ (©)
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Theorem 9 is thereby proved.

CoroLLARY. The nolalion being as in Theorem 15, let 41, - -, yn be clements
of B, and let F be o polynomwl with coefficienis in the field of constanis K of B
inmletters ¥y, -+« , Y. Then we have

AF G, oy Ym) = Z‘, (OF/8Y)(yr, ++ , Um) dy .

3=l

T} is easily seen by direct eomputation that

D-‘!F(yl 1T ym) = Zs:-‘l (GF/BY‘)(M LA ym)Dzyi H
the corollary follows immediately. Q)
In particular, we have the formulas - A\
d(y + 1) = dy: + dys, X o)

dlyys) = (dydy: + nldy.)..

§6. EXTENSION OF THE NOTION OR “t:BTBACE

Let B and 8 be fields of algebraic functions of dhe variable such that B is a
subfield of . We denote by K and I the fieldsof constants of R and S respec-
tively, and we assume as usual that X = Lﬂ\R In the case where K = L, we
have defined in §2 an operation of cotrace which assigns to every differential
w in R a differential Cospysw i S. Wé. propose now to do the same thing in
the case where K  L; however, in.that case, we shall have to assume that R is
separably generated. Let then u bels separating variable in R, Every differential
@ of B can then be written in{ the form 2(du}r , with some 2 ¢ K. Set Qw) =
z{du)s . It is clear that Q(yé)>= yQ{w) for every y ¢ E. We shall prove that we
have Xw) = Cospgysw int‘the case where K = L, and that, in the general casc,
the differential Q(w) d¢es not depend on the choice of the separating variable u.

Assuming that K %L, we have, in virtue of Formula (6), §2, Cospass(dule =
Cospays (Cﬂspx(m(du) ) = Cospx(!,);s(du) xw = (du)s. From this and
from Formul{(‘&) §2, it follows that 2(w) = Cospgrw if K = L.

Now we ghall prove that, in the general case, Q((dv)z) = {dv)s for every ele-
Toent » of 3. Let F(U, V) be an irredueible polynomial with coefficients in K such
thaje }f‘(zz v) = 0. Then we have (Corollary to Theorem 9, §5),

@F /00 (u, v)(du)e + (BF/3V)(u, v){dv)x = O

and (9F/3U)(u, v)(du)s + (3F/aV)(w, v){ds)s = 0. On the other hand, since
v 18 separable over K{u), we have (BF/’ V)(u, v) # 0. Thus we have

('u v}

2(do)a) = ip’i__ (dw)s = (dv)s.
EYa (u, v)
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Considering in particular the ease where v is itself 2 separating variable in R,
we see that the operation w —» Q{w) does not depend on the choice of the separai-
ing variable «.

The differential @(w} will be called the coirace of w, taken from R fo S, and wilk
he denoled by Cospays o.

If 738 an intormediary field between B and S and is itself a separably generated
field of algebraic functions of one variable (with L I T as its field of constants),
we have, for every differential w in B, Cospr/sw = Cospzs{Cospasrw). It i8
clearly sufficient to check the validity of this formula when o = (du}g , u being
a separating variable in B. In that case, the right gide is equal to

Cospz/s(du)r = (du)s = Cospays(du)z . ~

It follows in particular from our formula that, if 4 is a separating variable in -
8, it is alse o separating variable in 7' O
We have proved '

Tarorem 10. Let B and 8 be fields of algebraic functions of one variable. Assume
that R is separably generated, that S s an overfield of R and that the Jield of con-
stants of R is the intersection of R with the field of constants' L of S. Then there exisis
a mapping o —> Cosprys w of the set of dz:ﬂ’ereritfialts'\tif\}% into the set of differentials
of 8 which satisfies the following conditions: INH.b € B, we have Cospm(dv?n =
{dv)s; 2) the formaudae (1), (5), (6) of §2 areyal{d (in (8), T is takenlo be an 'mte?:-
mediary field between R and S which 130 separably generated field of elgebraic
funetions of one variable whose field of gonslants is L nmo.

Now we prove

TeEOREM 11. Let R be a ss{@af"\ably generated, field of algebraic functions of one
variable, and lei L be an ove}ield of the field of constanis K of Bj sel 8 = R(L).
Leb  be a differential of d-and denote by @ the differential Cospays @ of S. Then we
have, for any reparti@n\ tin R, w(t) = 8(Cosprss y). Let p be a. place of B and
B & place of S aboveld: if we identify the residue field of pwitha subjield of that of
B, we have resgé.QG_w.' ves, w. If w 5 0, the divisor () of 0 divides Conn;sf_l(w), and

i equal lo il the case where B and S have the same genus.

We.}iﬁi*e\m(g) = Y ,w'(z), the sum being extended aver all places ¢ of B,
and Q@ (Cospgst) = Do 2" (Cospst), the sum being extenc.led over all places
Q of 8. In order to prove the first assertion of Theorem 11, 1t “fﬂl therefqre be
sufficient to prove that «%(r) = p 0"F (Cospayst), where ¢ 18 a1 arbitrary
Dlace of R and O, -+ , s the distinct places of S above 4. Let (&) be' & se-
quence of elements of R which converges to r{@) in the g-adic ‘fompletm“. of
E. Then this sequence converges to (Cospass £)(Qu) in the Qk'%fm comp]et-lcjn
01;}8 (1 £ k < h); from a certain n on, we have i (r) = o' (@), (Cospayst) =
22} (1 = k& < &), and it will be sufficient to prove that, for every # € R,.
@'(e) = Tk @9%(). We first establish
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Lemma 1, Let q be ¢ place of a separably generaled field R of algebraic functions
of one variable. Then there exists in B a separating variable which has qas s umgue
pole,

Let ¢ be any separating variable in E, and let n be the divisor of poles of &
If g is the genus of R, select an integer m > 0 such that md(q) — d{n) is greater
than both 29 — 2 and ¢ — 1. Then no differential 50 of R is multiple of q™n?,
whence, by the theorem of Riemann-Roch, I{qg""™n) = md(q) —d(m) — g+ 1 > 0.
- This means that E contains an element z; ¢ 0 which is =0 (mod ¢ ™n). The
place qis the unique pole of either one of the elements , and ¢z, . Since

d(tﬁlﬁ) =tde, + o di N
and dt # 0, one at least of z, and & has a differential 20 and 15 therefore a
separating variable (cf. Theorem 4, §3). N,

This being said, we may return to the proof of the formula
w'(z) = Z I ON

Let z be a separating variable in B which has qa¢ 1ts unique pole; then we may '
write @ = y(dx)z, y ¢ B, whence & = y(dx) 5 ,an‘d we have to prove that

((da)a) gz = E c<dx)s>’°*uz)

Let o be the pole of = in K{(z); sinee. Zis the only place of R ahove g, the left
side of our formula is equal to ((d.:c) 1) (BDrs rtay2). Let £ be the pole of z
in I{z}; then Q is the place of Lz above g ,and £y, - D;. are the places
of S above); . Let 8 be th repartltlon of 8 which assigns yz to each of the places
LQu, -+, and 0 1o exxery other place. Then the rlght side of the formula to
be Proved is (d2)s(8) (d2) s (80w 298) = ((d2) ) *(8pss eaya), in virtue
of the Corollary 1 t6. Theorem 6, IV, §5. By Corollary 2 to Theorem 1, V, §4, we
have Spsu(z)yz = 8Dz (a2, and we are reduced to prove that ({d=x) x(:))qu(’u)
((dr) Loy Y (u) 0T every u ¢ K{(x). We may expand w in a power serics in & in
the qu-adm%hompletmn of K{z)iu = 2,12, e, Then it follows from Lemma 4,
§1 that both sides of the formula to be proved are equal to —er This completes
the pgoof of the first assertion of Theorem 11.

“Renote by Z.(p) the field of elements of the residue field of p which are
‘separable over K, by Py = P, - -+, Px the distinet places of S above p, and by
Z,(%s) the field of elements of the residue field of P, which arc separable over L
(I £ 7 = k). We know (Corollary 3 to Theorem 3, V, §3) that the algebra
(Z:(p))x. is the direct sum of A felds Zl, -+« , Zy which are respectively iso-
morphic to the fields Z.(P1), - - , =,(Ps); moreover there is an isomorphism
s of Z: with = «(B:) which induces on Z.(p} the natural isomorphism of this
field 111130 Z,(B.). Lety be an ar bltmry element of Z,(%P,), and let ¢ be the element
of Z1 which ig mapped on v by 1. We may represent ¢ in the form

Z%@Ek,

k=1

4

o\
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with @ € L, £ ¢ Su(p) (L = k £ r; the sign ® represents the multiplication in
(5.(0))z). Denote by Zi(p) the system of representatives of Z.(p) in the p-adie
completion It of R which is a field containing X (Theorem 1, III, §3) and by
5.(By the system of representatives of Z,(%.) in the Pi-adic. completion 8; of
8 which is  field containing L. It is clear that, if we identify B with a subfield
of B, T.0p) is a subfield of Z,(B.). Let & be the representative of & in 2,(p), and
denote by %: the element 2 . @&, the operations being performed in 8;;
then #; belongs to .(B.). It i clear that 71 is the representative of y in (-
On the other hand, since { ¢ Zy , the element > i aupi(Ee) of (B is0if ¢ > 1,
from which it follows that 3; = 0 if ¢ > 1. Denote by o the repartition of &
" which assigns & 0 p and O to every othex place, and by ¢ the repartition of §
which assigns 7, to § and 0 to every otier place. Then it follows from what we.
have said that ¢ = Zﬁ.:l ar Cosprys tx . Lhus we have, in virtue of the {izet as-
gertion of Theorem 11, Q¥ = Q@) = > ke apoo(ts) = > it i Bpz, o £ 168y @
The element Sps,n/x £ €5y o is the trace of the endomorphism,.of, Z{y) {con-
sidered as a vector space over K) produced by the multiplication'by & res, «;
this is obviously equal to the trace of the endomorphism of [Z:(9)) e (considered
as a vector space over L) produced by the multiplicationd¥ & res, w. It follows
 that 0%(3,) is equal to the trace 6 of the endomorphism of (Z.(p))z produced
by the multiplication by ¢ res, w. The space (E,(p)b‘ 8 the direct sum of

Z;.: e :ZEH’\

and the multiplication by ¢ maps Z; upond i3 > 1. It follows that § = Spzya§
TeBy & = SpE.,(“BﬂfL’Y res, w. Sinee Qﬂs(’?j) = Spz, /5y T€8 @ for everyy € Z:(P1),
we have ress @ = res, », which proves the second assertion of Theorem il.
+ Next, we wish to prove thatod(@) divides Conzys d()- Write o in the form
y(dz)s , where 3 is any separating variable in R, and y ¢ R; then

e
M) (), BE) = b))

(0x(y) and ds(y) reptesent the divisors of y in and S respectively). We know
that bs(y) = Codgade(y) (cf. IV, §7); this shows that we may assume without
loss of generality'that @ = (dz)s . Denote by D ihe different of B with respect
to K(z) andby @ the different of S with respect to L{z). Then we .hf’jve' by
Theoremy §3, d(w) = ©n , (@) = Gus? , where t1z and fis are the divisors of
pole’ob % in R and S respectively. It follows immediately from the defimtions
that 1y = Congss ftp . Thus we have to prove that @ divides Conars D 4

Let g be any place of K(z); denote by E the set of places of E above & and
!Dy F the set of places of S above g. IO ¢ F, denote by m(Q) the ramification
index of Q with respect to L{z}. Let y be all element of S sich that

ly) = ~m(§l)

for all Q « ' (cf. Corollary o Theorem 3, 1, §6) and let z be any clench of
such that »,(z) 2 0 for all g ¢ E. Then we have also _w(‘f’) Z 0 forall alle 5 ms o
ing use of Temma 4, IV, §8, we sée that Spayst 9225 integral ab all piace
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I{z) which lie above g . We also observe that, if 3’ is an element of R, we have
SPs/niz) ¥'2 = BPaa(x) ¥'2 in virtue of the Corollary 2 to Theorem 1, V, §4. This
being said, consider first the case where L is purely transcendental over K. In
this case, above any place q ¢ E there lies only one place O ¢ F, which is un-
ramified with respect to B (Corollary 2 to Theorem 3, V, §5); we may then take
for y an element of R. Making use again of Lemma 4, IV, §8, we see that

raly) 2 —m(q)

for every ¢ ¢ E, where m(q)} is the differential exponent of q with respect to
K{x}; it follows that m(Q) < m(q), and therefore that G divides CongsD.
This shows that, in order to prove our assertion in the general case, it will be
sufficient to consider the case where L is algebraic over K. This beigpthe case,
¥ belongs to a field which can be obtained from R by adjunction of s™inite num-
ber of elements of L and may therefore be represented in the, \f(}fﬁfl

¥ = 2 ay:
withy;e B(1 £72n),a, -+, a, being elements of L>which we may assume
to be linearly independent over K (¢f. Lerama 2, IVX8L). We have Spe/uiayz =
i1 @ Spyx(ayyz. This element is integral at every place ® of L{x) which lies
above g, . From this, we shall deduce that the €lethents w; = Spa xyse are all
integral at q, . Replacing if necessary x by, l/':c:} we may assume that »,,(x) = 0.
Let G be an irreducible polynomial with coeffitients in K such that », (G(z)) > 0.
Write u, in the form (Py(x))/(Q(z)), where Py, +-- , P, Q are polynomials
with coefficients in K and have no_eommon factor of degree >0. We wish to
prove that @ iz not divisible by. G Write @ = G --- @* , where ¢ € L and
G, -, Gy are distinet irredyeible polynomials with coefficients in L and lead-
ing coefficient 1. To each (e thiere corresponds a place & of L{z) above qo for
which #g,(Gi(z)) = 1, wikéni‘:e ve,(G(x)) = ¢, . Were @ divisible by @, then we
would have vy, (D573 ¥R} = ¢, (1 < & < k), and 2 i a:P: would be divisible
by each Gi* , and theéfore also by G. But, a;, - - - , a, being linearly independent
over K, it is easily.seen that this would imply that Py, -+ , P, are all divisible
by G, which ieimpossible. Thus we see that whenever z ¢ 2 is integral at all
- places g e Byblic elements Spyx. yiz are integral at gy . This means that

Ny

n(ys) = —m(q) (1£i5n)
forallplaces q ¢ E. If ¢(L) is the ramification index with respect to It of a place
D e F, we haverg(y,) = —e(Q)m(q), whenee —m(Q) = woly) = —e(Q)m(a)
which proves that & divides Congs D.

If B and S have the same genus g, then H(Q) and d(w) have the same degree
_29 ~ 2. Making use of the Corollary to Theorem 2, V, §3, we see that Conzys b(w)
15 of degree 2y — 2 equal to the degree of »(Q). It follows immediately that we
then have b(Q) = Congs b(w). Theorem 11 is now completely proved.

COROLLARY 1. The notation, being as in Theorem 11, the genus of S is at most
equal 10 the genus of R,
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Let g and G be the genera of R and S respectively, and let w be a differential 70
of B. Then we have scen at the end of the proof of Theorem 11 that Congysb(w)
is of degree 2¢g — 2, while p(@) is of degree 2G — 2; Corollary 1 therefore
follows immediately from the third asseriion of Theorem 11. Thus we see that

Theorem 11 vields a new proof of the first agsertion of Theorem 5, V, §5.

CoroLuaRY 2. The notation being as in Theorem 11, every differential of the
first kind of 8 is a linear combination with coefficients in S of cotraces {from R o
8) of differentials of the first kind of K. _

Let © be a differential of the first kind of 8. I z s a separating variable in E,
we may write @ = y(dz)s, With y € S. Since d{{dx)g) divides Conpsd{({da)e),(dr)s
has no variable zero with respect to R, from which 16 follows that ¥ has 4o,
variable pole with respect to K. Let {@:):cx be a base of L with respect 1gaK (I
being some set of indices); then we may write y in the form Do 0y, With e E
(¢f. the remark which follows the Corollary 2 to Theorem 5 ¥V, §5} Bet ey =
yd{dx)z ; then we have & = 3 s @i Cospaysw . Lot ¢ be any repartition of B
which has no pole; then Cospz/st hasno polein S, and we have O‘(——?.Q(Cospm!) =
> asi(1). Since w;(r) e K for all 7 e I, we conclude that wi(r) = 0 for all
i ¢ I. This means that each s is a differential of the ﬁlﬁs{\lﬁind.

CoroLLARY 3. Let the nolation be as in Theorep lis, ‘and assume that the ﬁeld
L is perfect. If a place B of S is not ramified with yespect to K, then the residue
field of the place v of R which les below B is sepgfable over K. _

Leb z be a uniformizing variable at p mR, and therefore also at P 1 K. Since
L s perfect, the residue field of P is separable over L; malking use of Theorem 5,
§3 and of Theorem 11, we have resi@™ (d2)z = T6S% 2 (dz)s = 1 # 0, and our
assertion, follows from Theoreyg'\& ’§3.
field R of algebraic func-
eld of constants K of B
» K and which has the
s above p 18 separable

- COROLLARY 4. Let p be a gldee of a separably generated
tions of one variable. Thepthére exists an overfield of L the f

which is algebraic of fifiiie” degree and purely unseparable ove
mﬂpegty that the r@\@tﬁé ‘field of the place B of R(L) which lie
over 1y, R\

Let K belah algebraically closed overfield of K, and let L. be the smallest
perfect sibfibld of K containing K. Then Ly is purely unseparable over K; denote
by P. the place of R{L:) above § and by z & yniformizing 'Vana:ble at P n
R(Ly). Then z belongs to a field which can be obtained by adjunction to & of a
fintto number of elements ¢z , - * ; &m of I . It foliows eas?]y from Corollary 3
that the field L = K{a, , -+« , Gm) has the required properties. "

Remark. Using the notation of the proof of the third a'sislert‘lon of Theorem 1;,
e e that b(0)(Conebla)) = D(dD)s)(Conmed@) - e fields R and
being given, the left side depends only on @ while the right side depends 013]3&?;1
. Tt follows, that, the divisor S = b(@) (Congsb(e)) " depends onty on £ an p
The formula 5(Q) = M Conpysd{w) shows that SR plays a role analogous to that o
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the different of a separable extension of finite degree (¢f. Theorem 2, §2); how-
ever, while the different is an integral divisor, 9% is the inverse of an integral
divisor,

TueorEM 12, Let R be a separably generated field of algebraic funciions of one
variable and let 8 be an overfield of R which is of finite degree over E. Denote by w
a differential of B and by z an element of S. Then we have Spayx(z Cospeser) =
. (Spsaz)w.

Let = be a separating variable in B. Write w —= y{dz)r , with 3 ¢ E, whence
Cosprrsw = y(dz)s . Since Spgayz = ¥ Spssaz, we see that it will kw sufficient to
prove Theorem 12 in the case where w = {dx) .

Let g be any repartition in R, Then (Spg/e (2{dx}s))(x) = Spy&lidz)s(2Cospast)),
where K and L are the fields of constants of & and 8 respeeiivély, Since (dr)s =
Cosp rizyse(dx) 1¢sy , we have \ &

(1) (dz)5(2Cosparar) = (dx) uin (SpguthCosprsr)

{(we make use here of the first definition of\the cotrace; of. §2). We set § =
Spyrein (2 Cospa/st). Thenwe have (Sps/az( 1')}) (I) = Bp1/x((dz) 22y (1)). We shall
prove that the right side of this last fofmbla is equal to (d2)x) (SPreyaml).
Denote by pthe pole of = in K{(z), and by % its pole in L{z). Tt follows immediately
from Theorem 2, II, §5 that there exists an element w e L{z) such that
va() — u) = 0for all places O P of L{z) (we denote here by the same symbol
- % an element of L{z) and the ¥epartition of L{x) which is associated with this
element). If y = y — ¥ \we have (dz) () = dx)rn(’). Set ¥(P) =
Z]]L:——m e * 4 ", wheréw is an integral element of the 3-adic completion of
L{z). Then we have (@adsiy(0) = —e; (Lemma 4, §1), whence 8pyx((d2) (1) =
—8pusxes . On thedther hand, we have Sprim izl = Bprinizel) + SPre/aials
whenee (02) e8P rx) = (de)xta (Spomay). I g is any place > p of K{(z),
~ then »o(y) 2-0Mér every place O of L{z) above q, whence vy (Sp s/ xcalf) = 0 (cf.
Corollary ¥t¢*Theorem 5, IV, §5). Therefore, (da) (2 Bbuia/an) = (da)xm) (),
where p jathe p-component of Sp 1.y, x%. Denote by K (x) the p-adic completion
of K{zand by Z.{z) the p-adic completion of L{z). Since P is the only place of
L{#) above y, we have

1 -
v = Y Spummens™ + o7 Spiiy .

We know that Spig,zmw is integral in K{z). On the other hand, any base
of L with respect to K is also a base of L{x) with respect to K{z) (Lemmas 2
ond 3, IV, §1) and therefore also of L{z) with respect to K{zy (cf. Theorem 4,
IV, §); it follows immediately that SPilarxmcs = Sprrxer. Making use
again of Lemms 4, §1, we have ((@*)x()"®) = —Sprxer. The formula
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Spuz({de) v ®) = (dz) xeay (Oprem/xizb) is thereby proved. Coming back to
formula (1), and making use of Lemma 3, IV, §7, we conclude that

(dz)s(z Cosprst) = (([dx)xin) Bpsx@z Cosprst) _
= (d2)x» Bprix OpexzCosperst)): -

Since (¢x)z = Cospesx(s(dx)x= , this is equal to (d%) 2(Spasaz (Cosparst)} =
@)z {(Spsix2)t) = ((Spesaz)(dx)s(r). The left side of (1) being equal %o
Speae(de)s) (), Theorem 12 is proved. :

§7. DERIVATIONS OF THE FIELD OF CONSTANTS

Let B be 2 field of algebraic funetions of one variable whieh is separable over
its field of constants K, and let D be a derivation of the field K. Them'ye can
(in infinitely many ways) extend D to a derivation of E. For, if 2 is anySeparating
variable in R, there exists a unique derivation (which we shall demote by D7) of
'R which eoincides with D on K and which maps @ upon 0, (Lemma 7, §4).
Let » be any differential in R; then we may represent @ in.ﬁhla form y dv, with
y ¢ R. We shall define D% to be the differential N4 '

Do = (D7) dz.

We obtaﬁn in this way a certain mapping n (whié]ri is not linear) of the space of
differentials of R into itself. If z is any element of R, we have

D(zw) = (D) ake(Dw).
In fact, the left side is (D"(zy)) dx = (D7) + 2(DFy)) dx, whichis equal tothe
Iight side. AN . :
Lemma 1, Let Rbe a separgs?}lg}g"énemted field of algebraic functions of one variable
and let D be a derdvation ofuthe field of the field of constanis K of R. Denote by = &
separating variable in BNgnd by DF the derivation of R which extends D tmd wk'zch :
maps x wpon 0. The:v\z:D‘ commudes with the derivation with respect to z in E (e,
wtth the dem’mﬂz’of{\p; which maps every element of K upon 0 and % upon 1). |
The Opera;t'r,ci'ﬁ A = DD, — D,D" is a derivation of £ (§4). We see immediately
that A mapsiupon 0 the elements of K and the element z, and th(?ref_{?re all ele-
ments of K(z) (Lemma 1, §4). Making use of the uniqueness assertion in Lemma
2,34, we conclude that A = O.
Lsmyia 2. The notation being as in Lemma 1, lot 2 be any ele
We hﬂ,ye _Dz(dz) _ d(Da:z)' .
Df" e have dz = (D) dx (Theorem 9, §5), whence, by
WD) dz = (D,D%) dx = d(D%2)- _ _
1, let o be any other separating

I.'EMMA 3. The notation being as in Lemma e 5 vl
Variabls in, R, Then, if w is any diferential of R, D' — D8 an exact differential.

ment of K. Then

Leﬁma 1, D’(ds) =

-~
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Write w = ydx = y'de’, withy andy’ in R. The operation D™ — I — (D*'x)D,
is a derivation of R which maps z and every element of X upon 0 and
which is therefore the zero derivation (cf. proof of Lemma 2); thus D*'y’ = D%’ +-
(DF2)Dyy’ and 0 = DF'y’ = D'z’ + (DF2)Dar’. We have D* o = (D"'y')da, and
dz' = (D2")dz (Theorem 9, §5), whence D”'w = (D"} (D.2") d — (D" =" (D' da.
On the other hand, we have y = ¢'(D.2"), whence Do = (D%y) dz = (D"y')(D.x")
dz + y' (DD.a") de = (DY} (D') dx + y'(D.D%’) dx, by Lemma 1. It follows
that D'e — D¥e = y'(D,DF2") dx + (De')(Dwy)dx = (D.(y’-1%z")) dz, which
proves Lemma 3.

Lzmua 4. The notation being as in Lemma 1, let also « be a différential of R, pa
place of B, and w an element of the -adic completion K of B. Themaue have D{w (1)) =
(DFw)’(u) + " (DFu). AN

In this statement, D*u represents the effect on u of+the continuous derivation
of B which extends D (ef. Lemma 5, §4). A, \

Setw = y dz, withy e R, Then the formula to be'proved becomes D({(dz) (yw)) =
@)"((Dy)u + yDw), or, if we seb yu =0 D((dx)' @) = (da)(D%). Let
Yo be the place of K{(z) below p, and let wybe the trace of v, taken from B to
the pe-adic completion of K{x). Making ude 6f Lemms 3, §4, our formula becomes
D{((d2) x@)"*(w)) = ((dz) x(a)** (D*w) Assume first that po is the pole g of z in
K{z). Then we may expand w in theformw = >°72 . e, with ¢ K. Making
use of Formula (5), §4, we have D‘w = sz_m (Dew)a™, and we see that both
sides of the formula to be proved are equal to —De; . Assume now that py #
% . Then we can find an element 2 ¢ K{z) which has no other poles than possibly
Yo and o and which is sughvthat »y,(w — 2) = 0. Then we have ((dz)x) @) =
([d2) ) () = -—~((®s)}(,,))“°(z}. On the other hand, if 1 is any place 7 of
K{z}, then D* mﬁpﬁhlto itself the ring o of v, . In fact, the elements of o are the
fractions P(x)/@(»} where P and @ are polynomials with coefficients in K and
() = Q. »Since D*(P(2)/Q(z)) is the. quotient of a polynomial in z by
@), We.sge\that DF(0) C 0. It follows that D% has no other poles than possibly
bo and gpand that D*w — D% is integral in the pe-adic completion of K(z). We
conclude’ that ((dz)xi)"(DFw) = ~ (%) &) " D%). Since we know already

'Ehﬁ?t,’D(((dx)x(z))“(z)) = ((d2) m(y)"" (D), our formula is completely proved.

"TrECREM 13. Let R be o separably generated field of algebraie functions of one
variable, and let D be a derivation of the field of constants K of R. Denole by & @
separating variable in B and by D" the derivation of R which extends D and which
maps & upon 0. Let w be a differential of R and p a place of R. Let Z, be the field
of elements of the residue field of p which are separable over K , and denote again by

D the dg)m'aﬁﬂn of Z. which extends the derivation D of K. Then we have res,D’e =
Dfresyw),

N\

We form the p-adie completion B of R, and we denote by 5, the system of
representatives of 3, in & which is a field containing X (Theorem 1, ITT, §3). The
derivation D may be extended to a continuous derivation of R, which we denote
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again by D" (Lemma 3, §4). The derivation D of K may be extended to a deriva-
tion of I, and it follows from Lemma 2, §4 that this derivation is the restriction
of DF to &, . It is clear that, if ¥ is the representative in 3, of an element £ ¢ Z, -
then D°E is the representative of Dg. This being said, let v be any element of Z,,
and let ¥ be its representative in Z, . If we denote by o the regidue of w at p, we
have D(&"(7)) = D(Spz,rxvp). The right side of this formula is equal, in virtue
of Temma 3, §4, to Sps,eDlyp) = Spzyx(Dv)e + Spz,x¥(De) = o' (D%) +
Spsxy(De). On the other hand, we have, by Lemma 4, D(@'(#) = (D')'7) +
(D). We conclude that (D'w)’®) = Spz,sey{Dp). This being true for every
clement v of S, , we have res,D%« = Dp.
§8. DIFFERENTIALS OF THE SECOND KIND ) \
In this section, we shall limit ourselves to the consideraiton of fields of chamétev‘istic
0.
We have defined a differential of a field of algebraic functions of ere variable
to be of the second kind if its residues are all equal to 0; in pdrticular, every
" differential of the first kind is of the second kind. Tt follows\from Theorem 5,
§3 that every exact differential is of the second kind. It is'elehr that the differen-
tials of the second kind form a vector space over the fielg f constants of the field
under consideration; one of the main results of thigchapter will consist in the
evaluation of the dimension of the factor space of $Hiis space by the subspace of
- exact differentials. : o
Let R and S be fields of algebraic functios of one variable of characteristic [?;
we gssume that B is a subfield of S and that the field of eonstants Ko Ris
the intersection of R with the field of vonstants L of 8. Then, if w is a differen-
fial of the second lind of R, Cospa;s is of the second kind in S. For, let 7' be the
field R{L}; then 8 = Cospasre }ggf the second kind in virtue of Theorem 11, §6
and Cosprsw = Cospyysf isoF the second kind in virtue of Theorem _3, §2. On
the other hand, if S is of\finite degree over R, and if 2is & differential of the
second kind in S, thef/Sps/=Q is of the second kind in E, a5 follows from Theo-

rem 1, §2, N\
Q)

Trmormy 14306t R be a field of algebraic functions of one variable of charac-
teristic 0, and Bt wbe a differential of B. If pts @ place of R, there existsan T e B
such that Yo — da) = —1. In order that there should exist an 2 € R such that
wlw — dx) = 0, it is necessary and sufficient that resws = 0. If this condutzon 15

sutisfied, then there exists for every integer 1 an element Tn ¢ R such that

vl — d2a) = _
Write o = y di, where ¢ is a uniformizing variahle at , and ¥ € R. Denote |
by Z the residue field of p, by R the p-adic completion of B, and by Z the syst-en;
of representatives of = in R which is a field containing the field of cunstants °
R (Theorem 1, I1T, §3). Then R may be identified with the field of fqrmal p;)wer
sevies in ¢ with eoefficients in = (II1, §3), and We DAY expand y in the form
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2 i cal” (where m is some integer > 0). If » is in integer = ~m, we can find

-an &, ¢ B whose expansion is of the form > o, .. cif with ¢f ¢ 3 and kep =
e forl —m =k =041,k = 0. If D, is the derivation with respect to £ in &,
we have, by formula (5), §4, Dy, = 3 su—m ket™™". Thus we have oy —
Dy, ~ ¢4t ") Z n, whence, since obviously »y(df) Z 0, v,(e — de, — cfd) =
n. In particular, we have py(w — dz_;) = —1. Taking now » to be = 0, we see
that resy(w — dan — et 'df) = 0, whence, since res, dz, = 0, resw = ¢,
resy {dt = ¢.1 , by Theorem 5, §3. Thus, if res,w = 0, we have velw — dz.) = n.
Conversely, if there exists an = e R such that »,(w — dz) = 0, we have resw =
res, dz = 0. Theorem 14 is thereby proved.

™\
Lesmma 1. Let p be o place of a field R of algebraic Junetign\of one variable of
characteristic O, and let = be an element of R. If vy(z) = 0, adehave v,(dx) = 0. If
vo{2) # 0, we have v,(dx) = »y(z) — 1. O

The first assertion, which is true independently{ofiany assumption on the
characteristic of R, follows immediately from Theorem 7, §3. If p,(z) 5 0, then
the ramification index of p with respect to K@Js | »,(x) | , and it follows from
Theorem 7, 1V, §8 that the differential exponent of p with respect to K(z) is
| »o(z) | — 1. The exponent of b in the ivisor of poles of z is 0 if »y(x) > 0 and
—»{) if %y(z) < 0; in any case, thist ;&ponent is (1/2)(] »y(x) | — vy(x)). The
second assertion of Lemma I then follows immediately from Theorem 7, §3. -

LEMMA 2. Let oy, +++ , P be. distinet places of a field R of algebraic funcitons of
one variable of characterisiie Q"'Lét M be g vecior space (over the field of constants
K of R) of differentials of B} and let T be the subspace of M composed of those
differentials in M who§e<res£dues a4 Pi, vor, Y are equal fo 0. Assume that M
containg every differerbadd which 1s a multiple of (b - - pm) ™" Then M/AN is a

vector space of finite \mense'on equal fo max{0, (37, d(p)) — 1}.

Denote by, Zpthe residue field of 9;: (1 £ ¢ £ m), and form the vector space
IT% = over:?(. To every « ¢ M we assign the element ®(w) of ][, Z: whose
Z;-coordinate is, for each 1, res,,w. We obtain in this way a linear mapping ¢ of
m inEM?q Z; whose kernel is obviously R. It follows immediately from Theo-
rem % 1T, §5 that (1) is the subspace of [[7 Z; composed of the eleme'nts

L85, -+, pm) which satisfy the condition 2 i 8psyxp: = 0. The mapping
for, <=+ ) pm) — D0 Spyymp: 35 & linear function on II% 2: which is not
identically 0 if m = 0. It follows immediately that dim (/%) = dim &(IM) =
max {0, (377 d(ps)) — 1}

TumorEM 15. Let R be o field of algebraic functions of one variable of charac-
teristic O and let P and Q be two disjoint finite sets of places of R. Denote by © the
space of differentials of R having no pole in the set P and whose residues at all places

- not tn Q are 0, and let & be the space of differentials of elements of R which have the
places of P as zeros. Then the factor space D/E ds of finile dimension equal ¥
29 + p + q, where g is the genus of B, p=max{0, (D mrd(p) — 1}, and 7=
max{0, (Lye dlg)) — 1}. |



D_IFFERENTIALS OF THE SECOND KIND | 129

Denote by T ihe space of differentials belonging to © and whose residues at
all places q e (} are 0 (i.e., D is the space of differentials of the second kind in
 ®) and by & the space of exact differentials having no pole in the set P. Then
it follows from Lemma 2 that D/D’ is of finite dimension equal to ¢,
In order to cvaluate the dimension of D'/ &', we introduce the following notion.
An integral divisor a of a field B of algebraic functions of one variable is called
special or non special according as to whether or not there exists a differential
20 of R which is multiple of a. If ¢ is the genus of R, any integral divisor of
degree >2¢ — 2 is clearly non special. '

Levmia 3. Let a be any non special integral divisor of a field B of algebraic func-
tions of one variable of characteristic 0, and let o be a differential of the second kind
in B. Then there cxisls in R an exacl differential di such that o — de=0 (m?d a5,

Let 1, --- , t; be the distinct poles of w. Since w is of the seconii’kfnd, 1t
follows from Theorem 14 that we can find for each i (1 £ ¢ £ $)'an element
%; € R such that vy, (w — dz;) = 0. Let ¢ be the repartition of £ which assigns
zitot: (1 £ i < s) and O to every other place. ‘Making use ‘oD Theorem 2, 1I,
§5, we see that there exists an z ¢ R such that & — ¢ =0 fmod &), Set a =
TLy*™. We have v, (z — z) = —ea(s), whence »..(d% dry) = —2a(ry) (o,
if a(t) > 0, then, by Lemma 1, v,;(dz — dz:) Z —d) — 1 = —20(xy), while,
if a(z;) = 0, v, (dx — dx;) = 0);if p does not beorr among T, v 5 Ty then
»(z) = —a(p), whence, as above, »(dz) = —2&(1:). 1 follows immediately that
we have in any case »,{0 — dz) Z —26(p), and'T.emma 4 is proved. _

This being said, let us return to the proéf of Theorem 15. Since E has infinitely
msny places, we can find a finite nupmber of distinet plices & , -+ - , & of &, none
of which belongs to P, such that(the divisor & = & -~ 8, is non special. Let
D" be the space of differentials.belonging o % which are = 0 (mod o). If
wed weecanfindan e Rgu\ that w — dz = 0 (mod a’) A p}ace v ¢ P, not
being a pole of w and not peeurring in ¢, cannot be a pole of dz, which proves that
de ¢ & and that o — @ne D”. This means that we have T = & + D7, and
therefore that T/E i8"isomorphic with £ /&, where € = @no. I:To_w, let
It be the Sp&ce‘b{";ﬂl differentials which are = 0 (mod a). Then S:D’ is t}m |
space of diffexéntials of the second kind pelonging to 9%, and, for 2 differential -
belonging 169t to be in D”, it is sufficient that its residues ab &1, -+ 5 3 be-GQLI{il
to 0. We rday assume that ¢ > 0; making use of Lemma 2, we see that M/D” 1s
of dimension o aB)) — 1= d{a) — 1. On the other hand, the the?orem of
Riemann-Roch gives 0 = [(a) = —2d() =g + 1+ dim 9, whence dim =
2d(0) 4 g — 1. Thus We see that D” is a vector space of finite dimension qual to
in(“) +g—1—{(da)—1) = ale) + 9. ‘We have now to evaluate the dimen-
sion of @”. 1t follows immediately from Lemma 1 that, in order for an element &
of B to be such that dy = 0 (mod a™), it is necessary and sufficient that y =
0 (mod 0™). Since q is non special, it follows from the theoremn of R1emann—lFiloc;1
that the dimension of the space § of clements of E which are = 0 (mod o) 18

4(6) ~ g + 1. The mapping ¥ — dy Maps % linearly onto &”, and the kernel of
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this mapping is the space of constants, which is of dimension 1. Thus we have
dim & = dim § — 1 = d(a) — g. We see that we have proved that /@ is 3
vector space of finite dimension equal to (d(a) + g) — (d(a) — g) = 2g.

Finally, we have to estimate the dimension of & /@. Let & be the space of all
elements of B which have no pole in the set P, and let ® be the space of elements
which admit the places of P as zeros. The mapping z — dz maps &’ linearly onto
€, and © onto €. Let § be the space of constants ; then @ is the kernel of our
mapping, from which it follows easily that §'/€ is isomorphic with &'/(¢ + &),
Denote by Z; , -+ , £, the residue fields of the places p, , -- -, p, belonging to
P, and form the vector space H}‘.,,l Z; over K. To every 2z ¢ @ associate the
element O(z) ¢ [J: 2; whose Z-coordinate is, for each 7, the¥ulue taken by
2z at p: . Then it follows from Theorem 3, I, §6 that ® maps\&" onto [[ %, = .
The kernel of ® being &, we see that ®'/© is a vector spade"of finito dimension
equal to dim ]2, 2, = 3., d(p). If P is not empty,then G has only 0 in
common with &, whence, since dim § = 1, dim ©/E =32, d(p)) — 1 = p;
if P is empty, then ¢ =. €, whence dim §'/& = 04={p. Theorem 15 is now com-.
pletely proved, )

CoROLLARY 1. Let R be g field of algebrgig\flinctions of one variable of charac-
terisiic 0.and of genus g. Then the factor. Sptice of the space of differentials of the
second kind of R by the space of evact differentials is of finite dimension equal o Zg.

"This follows immediately from Iﬁéo;em 13 by taking P and Q to be empty.

CoRoLLARY 2. Let R be a ﬁéld of algebraic functions of one variable of charac-
lerestic 0, and let I be an overfield of the field of constants K of B. Then every dif-
Serential of the second kind of R(L) can be written as the sum of an exact differential

and a linear oambina@nn’ with coefficienis in L of cotraces of differentials of the
second kind of R, ‘ o\ .

Let g be the géniis of . Then it foltows from Corollary 1 that we can find 2¢

' diﬂ"erentia,ls:_ w * 5 g Of the second kind of R which are linearly independent
(over K) mbdulo the space of exact differentials of R. Set @; = Cospass(pyw:
1= ,’{'529)- Then we know that the differentials ©; are of the second kind in
E <L} We shall see that they are linearly independent (over L) modulo the space
oft sxé,ct differentials of R(L). We let @, +- , dy, be elements of L such that
i 6 = da, with 7 « R(L). The differential on the left side of this formula
has no variable pole with respect to B, as follows from Theorem 11, §6, if we
observe that R{L) has the same genus as B (Theorem 5, V, §6); making use of
Lemma 1, we conclude that z has no variable pole with respect to R and can
therefore he written in the form of  linear combination with cocfficients in L of
elements of B {Coroliary 2 o Theorem 4, V, §6). Let {B;} ;s be a base of L with
resgect to K; thenz = 3, bits, t; ¢ B, Write a; = 3 yur ¢5b;, and set 1; =
Zsﬁ-d ¢ijei. Then we have Zid bf((dxi)ﬂ(lf) — Cospaaipyn;) = 0. Let t be 2
non eonstant element of B, and set (du;), — 2 = w(d)s, with u; ¢ E.
Then Zfefujb;f = 0, whenee u; = 0 for every 7, by Theorem 1, V, §4. Since

<
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Eﬁgl ci; = (d2;)x , We have ¢ = 0 for every 7 and j, whence a; = 0 (1 =
i < 2g), which proves our assertion. The field R{L) being of the same genus g
o8 R, it follows from Corollary 1 that every differenfial of the second kind in
R(L) is congruent modulo the space of exact differentials t0 & linear combination
of @, <+, Qg , which proves Corollary 2.

Remazk. It follows from Corollary 2 and from the corollary 2 $o Theorem 4,
§6 that every differential of the second kind of R(L) which has ne variable pole
with respect to R is a linear combination with coefficients in L of cotraces of
differentials of the second kind of K.

We shall now consider fields of algebraie functions of one variable over alge-
braically closed ficlds of characteristic 0. ~

Lavva 4. Let B be a field of algebraic funciions of one variable over amalje-
braically closed fidd K, and let E be any infindte set of places of B. The, g s
the genus of B, we can find g places pr , <+, Po 0 E such that the divisor 9 - - %o 18
non specsal. "G

We may assume that ¢ > 0. Let wn be any differential ofithe first kind 70 in
R; then we ean find a place p1 ¢ E which is not a zero of wiy and it 13 clear that
the space of differentials which are =0 {mod p;) is of ension < g — L. Let
- hbe any integer such that 1 £ k = g. Assume that W} have already found & — 1
places y;, --- , puy in E such that the spacel of differentials which are = .
O(mod 1 - - - pry) is of dimension £ g — AP 1. If this space s #{0},_t.ake a
differential @ ¢ 0 in it, and let p bea placg in £ which is not a zero of @; if this
 space is {0}, let ps be any place of E-distinet from by, << Py - In the first
case, the space of differentials of B pich are multiples of b1 -+ P& has a d!met_l-
sion less than the space of djﬁeren'tﬁls which are =0 (mod ¥ - - pas), and this
dimension is therefore < g — R this conclusion is also true in the second case.
At the end of this proceduyé,we obtain a set of g places of E with the required
property. PN

The notation being/as"in Lemma 4, set a = P~
Lemma 3 that egehy differential of the second kind is congruent modulo the
Space of eXa-('.-t,dﬁ’%rentials to a differential which is =0 (mod « ). For each ¢
=g g),.lef_"x,; be a uniformizing variable ab p: - Hwsa d]ﬁerentlall of the
second kifich Which is =0 (mod a ), write & = %: dx: , with u; ¢ E. Making use
of the Cotbllary to Theorem 6, §3, we seé that the c.OBﬁiGlEEﬂt of the term in
?‘Tl in the expansion of u; in a power series in &: in the padic completion of &
15 0. We may therefore write : '

w = (ad@)zs” 4 bilw) + wwi)ds
with #; integral at p; . T.et T be the space of Jifferentials of fihe second 1_&111(1 Whlgl
ate =0 (mod o%). Then @ , - - » Go » by, Dbgare 2¢ hnea.}' functions on .
K o) = byw) = 0 (1 < ¢ < g) for some @ ¢ ©, then v admits pr, "~ P, as

%er0s and is therefore =0 (mod @), whence @ = 0. On the other hand, D cannot

¢ontain any cxaet differential 50; for, if © R ig such that dz € @, then it follows

v, . Then it follows from
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from Lemma 1 that # = 0 (mod a™"), and the theorem of Riemann-Roch gives
Ha™) = d{a) — ¢ + 1 = 1, which proves that the only multiples of a™ are the
constants. This being the case, it follows immediately from the Corollary 1 1o
Theorem 15 that D is of dimension 2g. The functions a:(w), b:(w) are therefore
linearly independent. Thus we have proved

TaeoreM 16. Let B be a field of algebraic functions of one variable over an olge-
braically closed field Kof characteristic 0, and let g be the genus of R, Let p,, -+ -, p,
be g distinct places of R such thai the divisor a = P -~ - 9, 15 non special; for each
1 let 2; be @ uniformizing variable at b; . Betng given 2¢ elements a; , b:of K (1 5
i £ ), there exists a untquely determined differential w of the secondfind of B which

is such that v, (w0 — (@xT + b)dz) > 0(1 24 £ g). A
:..i\\“"’
i 1 \",
) (u"‘
\:\\\
K7\
x\‘



CHAPTER VII
THE RIEMANN SURFACE

Throughout this chapler, C will denote the field of complex numbers and B a field
of algebraic functions of one variable over C. We shall denote by T the Riemant
sphere, obtained by adjunction of @ point < fo C'; T 45 therefore a compact topological
space, homeomorphic o a 2_dimensional sphere in euclidean 3-space.

§1. DEFINITION OF THE RIEMANN SURFACE _ o N

Let S be the set of all places of the field B. If z ¢ B and if p is a plagg of 'R,
then either p is a pole of z, in which case we say that x takes the valygye 8t y,
or this is not the case, and then, since C is algebraieally closed, the, value z(p)
taken by = at b is some complex number. Thus we can associate to every x ¢ B
a mapping » — x(p) of S into =. If = and &' are distinct glemments of R, there
exists 2 place p which is neither a zero nor a pole of 2 Vg7 and which is not
a pole of z, which proves that the mappings p — z(p) andp — 2'(p) of Sinto 2
are distinct. We shall henceforth use the same symbahato denote an element of
R and the mapping of S into 2 which is associated with it.

We shall introduce a topology in S with respedt to which the mappings & (¥ ¢ R)
shiall be continuous. It is well known thatybeing given a set of mappings of a
st X into a topological space E, there ida weakest topology on X Whlf:h makes
these mappings continuous. We shall kenceforth consider S as & topological space
whose topology is the weakest_ with respect to which all mappings = (= ¢ &) are
continuous. The open sets of S<are those which can be Tepresented as umions of
sets of the form N '

8 2:{1(%]1) Ny N -0 xIl(Uk)\

where @y, - - , z, Biein K, while Uy, «- -, Us a%e OPEB subsets of = (& (U} de-

nofes the set of places v such that z(p) ¢ U). . b
This t0D01D§Y"é&n be defined in an alternative manner. Let us form, for eac
ZeR, ac6py <. of the space =, and let P be the Cartesian product of the sp ac:z

Z.for all '€ R. If we assign to every p ¢ S the point &(p) of £ whose Ez-cao'rdma
5, for every z, z(p), we obtain a mapping & of S-onto a subset S of P This mapR-
Ding is one-to-one. For, if p and q are distinct places of R, there exists al I)e#
which takes distinct values at p and g (by Theorem 3, I, §6), whencé‘: (1 v
®(4). The set (1) is the inverse image under & of the set V(za, Ui - < ?S ’ TIIIGB
tomposed of those points of P whose Z,,-coordinate isin U (L2725 n of
st Vv, Uy; --- : 20, Uy) is open in P, and every open set of P isa ‘fnigmwith
%efs of this form, It follows immediately that 215 & homeomorphism ol & fon
the subspace of P carried by &. In particular, since the Hausdorff separd
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axiom holds in P, and therefore in §’, this axiom holds in S, that is, S is a Haus-
dorff space.

Now, we shall prove that 8 ¢s compact. Since P is a product of compact spaces,
it is compact; it will therefore be sufficent to prove that 8 is closed in P. Let
% = (Ua)zer be a point of P which is adherent to S’. We shall denote by o the
set of elements z € B such that u, % . We shall prove that nis a V-ring in R
and that u = ¢(p), where b is the place which corresponds to o.

If ¢ is a constant, then ¢(p) = e for every place p. This means that all points
of 8 have the same Z.-coordinate, viz. ¢. Since u is adherent to &, it follows
immediately that %, = ¢; in particular, we see that € C 0. Let ¢ be a point of £
and € a real number >0. If a # o, denote by 8(a, £} the set of péints ¢’ # o
of T such that ¢’ — a| < &; by a(oo £) we shall represent thesgef’ composed of
% and of the points ¢’ # « of Z such that | e’ | > & . In.dn¥case, 8(g, ) is
an open subset of =, Let z and y be elements of B. Denote by~¥, the set of points
D = (0s)ser Of P such that the inclusion v, e §(tt,, &) holds&y fienever z is one of the
elements x, y, ¢ — y or 2y. Then V. is an open subgét of P and contains u; it
follows that V. contains a point v, = (0,,)xxr of 87 et v, = ®(,), p. € S. If
z and ¥ are in o, then u, and w, are < «, and .b\herefore also v, . and #,,, . Since

= ¢(p.:), we have vz, = 2(pe), 2y, = y(p )»bz—vc = @ = Y)(P) = tore — Vpe
and similarly, vz, = s, - On the otllér hand, it is clear that u, = lm,.. .
whenever z is one of the elements z, 3, 3.2~ ¥ or zy. We conclude that u._, and
Uy Are Yespectively equal to u, — iy ~and to ug, . Thus we see that » is a ring and
that the mapping 2 — u, (v € 0) i is\a' homomeorphism of » into € which maps the
elements of C upon themselvess Now, assume that z ¢ 0 and that y = 2z~ K
¥y = o, then p, is a po]gof x and therefore a zero of ¥, whence »,, = 0, if
Ve 7 o0, thenw,, = vzrand v, | > & when(,e | v, i < & In any case, we
have | 4, | < &. This 1}&1\115 r true for every £ > 0,%, = 0, whence © " e 0. Finally,
we have o # R. Féryif = 15 an element of o not in € and 2 =z — 4., then
e = 0,but &’ 207and 2~ is an element of R which cannot be in o since other-
wise we would; hive ug-1u,r = 1. Thus we have proved that o is o F-ring. Let
p be the O(Q:respondlng place. The elements of p are clearly the elements z of
o such trha\t’ u#, = 0;if z 15 any element of o, we have & — u. ¢ 9, whence 4, =
(P}, Lt follows that 1 = ®(p), and our assertion that S is closed is now proved.

{We’shall prove that, if p is any place of S, then any uniformizing variable 2
at $ maps some neighbourhood of p in S topologically onto a neighbourhood of

the point 0 in Z. Denote by p, = 1, - - , s the distinet zeros of #, and set e; =
() (1 = ¢ = h). Then we have e, = 1 and Dty g; = [R:({z)] (Theorem 4,
I, §8); we shall denote this last number by n. Let a;, -+ , @ be £ distinct com-

plex numbers; we know (by the corollary to Theorem 3, I, §6) that there exists
an element y ¢ B such that »,,(y — a) = 1 (1 £ ¢ £ ). Let F(X, ) be an ir-
reducible polynomial with complex coeficients such that F(z, y) = 0. Since
Fiz, Y} is irreducible in the ring C{z){Y], F is of degree <n in Y. Since y{p:) =
a; (1 £ 7 £ k), we have F(0, a;) = 0. We assert that a; is a root of multiplicity
e of the equation F(0, ¥) = 0. For, write F(0, ¥) = (¥ — a,)™G(Y), where G:



DEFINITION OF THE RIEMANN 3URFACE 135

is a polynomial which is not divisible by ¥ — a;, whenee v, (F(0, 1)) = m:.
Weeanwrite F(X, Y) — F(0,Y) = XH(X, Y), where H is a polynomial, whence
F(0,y) = —xH(z,y) and therefore m; = vy, (%) = ¢;. On the other hand, Z§=1 My
is at most equal to the degree of F(0, ¥, which is itself =n = D ke It fol-
lows that m; = ; (1 £ ¢ < h); moreover we see that F is of degreen in ¥, whence
R = ({z, ). This being said, we shall make use of the continuity of the roots
of an algebraic equation. Let s be a positive real number smaller than all the
quantities (1/2) |a; — a;|, for 1 £ ¢ £ § £ k. Then we can find a number
r > 0 with the following properties: if £ is any complex number #0 such that
|£| = r, then, foreach? (1 £ ¢ £ h) the equation F(g, Y) = 0 has exactly &
distinet roots 7z (1 < & < e,) such that | 74 — ¢;| = s. Since |a; — a;] > 2s
for ¢ = j, we see that the numbers 54 are all distinet; there are n of theSe num-
bers. It follows from Corollary 2 to Theorem 1, I, §4 that there exigts for each
7 2 place g of B which is a common zero of ¢ — § and 4 — 7 ~The n places
G are mutually distinet; sinee [R:Cz — ] = [R:0()] = itfollows from
Theorem 4, I, §8 that the places g are all the zeros of z — &b R;and that these
zeros are of order 1. Let N be the set of all places q such, thgit’ix(q) | €7, 9@ —
a1| £ 5. Then it is clear that ¥ is a closed neighbourhoed of  in the space S.
Since e = 1, it follows from. what we have proved above that, for every £ # 0
such that | £] £ r, N contains exacily one zerq@ﬁ % —  {it is the place which
was denoted above by qu). This shows that Z\mdps N in & one-to-one way onto
the closed cireular disc of = composed of ¢he’ points & ¢ 2 such that ] £ »
This mapping is continuous; since N is ¢losed in S, it is eompact, which proves
that our mapping is topological. (% . )

Thus we see that every point of S has a neighbourhood which is homeomorphic
to a neighbourhood of a pointdn the plane. It is therefore appropriate to call
8 a surface. We shall say t\‘{;.S is the Reemann surface of the field B. We have
proved the following resultst '

Taroreym 1. Let Sbéthe Riemann surface of the field B. Then every element
of R induces a continirous mapping p — 2(p) of S inio the Riemann, sphere, Emd the
topology of 8 isfko Wweakest with respect to wwhich oll these mappings are conlNuUOUs.
If  is a uniformizing variable at @ point D € 8, then there exists @ neighbourho?d
of pin 8 3{171’1‘?:?1- is mapped topologically by x onto a neighbourhood of 0 in the Rie-
manty/Sphere. '

Let A be a subset of S which has the following property: there exist an open
subset {7 of S containing A and an clement € B such that maps U topologlcal%y
onto a neighbourhood of 0 in 2 and A onto & closed eircular dise of center 0 in
Z {of radius > 0). Then we say that A is a closed disc n 8, or, if mf)re precision 1s
needed, a closed z-disc. An open subset T of 8 is called an open disc {or an open
z-disc) if its adherence in S is a closed disc. The point of an m.-disc (open or closed)
which is mapped by « upon 0 is called the z-cenfer of the disc. The radius of the
image of the disc under z is called the x-radius of the dise. The bouydary of an
2-dise (open or closed) is mapped by  upon & eircumference in Z; this boundary
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is called the circumference of the dise. It follows easily from Theorem 1 that, if
z is a uniformizing varisble at a point 9 of S, then the closed z-discs of z-center
p form a fundamental system of neighbourhoods of p; the same is of course true .
of the open z-dises of z-center p. On the other hand, any closed 2-dise of 2-center
p is contained in an open z-disc of z-center p, and every open a-disc of r-center
pIn a closed z-dise of z-center p.

EXAMPLES OF RIEMANN SURFACES.

1) Assume that B = ({z), with z transcendental over . For cachae(, 2 — a
has a single zero . ; on the other hand, » has a unique pole p_ . We know that

« there are no other places than p,, and the places y, (¢ ¢ C). We conclude that,
in this case, x maps § in a one-to-one way upon =. This mapping*being continu-
ous and § being compact, we see that S is homeomorphic with =)

2) Assume that B is the field of elliptic functions of Q{ié{"ariable with the
periods { and ¢’ (cf. II, §8). Then we have seen that to every complex number ¢
there corresponds a place pa. of R, which is the set ef “elliptic functions in the
field which have ¢ as a zero; moreover, all places:0f)R are of the form b, , and
a necessary and sufficent condition for p, and 43 30 be identical is for # and &’
to belong to the same coset of the additive gToup G of complex numbers modulo
the subgroup H generated by ¢ and {'. Thisy We see that S is in this case in a
one-to-one correspondence with the group &/ H. Tf p(3) is the place which corre-
sponds t0 a 3 ¢ G/H, then, for every OR, z(p(3)) = z(z), where 2 is a complex
number belonging to the coset ; modelo H. Now, the function 2(z) is meromorphic
and therefore continuous (as a.,mgpj)ing of C into %). It follows easily that the
mapping 3 ~> 2(»(3)) of G/HNnto T is continuous. This being true for every
z ¢ R, and the topology of{S\being the weakest to make the mappings p — z(p)
continuous, we concludethat the mapping § — p(;) of G/H into S is continuous.
Since G/H is compabfyour mapping is & homeomorphism. Thus we see that §
is in this case horg@emorphic with a 2-dimensional torus.

In the first exainple given above, the field B was of genus 0 and its Riemann
surface was homeomorphic with a sphere, which is a surface of topological genus
0. In thegel’“eﬁnd example, B was of genus 1 and its Riemann surface was homeo-
morphi¢"with a torus, i.e., with a surface of topological genus 1. We shall prove
later. that the topological genus of the Riemann surface of B is always equal to

Ahe genus of R.

§2. MEROMORPHIC FUNCTIONS ON THE RIEMANN SURFACE

Let S be the Riemann surface of R, and let p be a point of S, Let « be a uni-
formizing variable at p and N an open z-dise of z-center p; set D = z(N). K
& € D, let p; be the point of N which is mapped by z upon £. Let 5 be any element
of B. If we set f(£} = y(p;), we obtain a mapping f of D into T. We shall prove
that this mapping is a meromorphic function on D.

Let F(X, Y) be an irreducible polynomial with complex coefficients such that
Fz, y) = 0. Then we have (3F/87)(z, y) = 0, and the element (3F/28Y){z, %)
has only a finite number of zeros. On the other hand, since y has only a finite
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qumber of poles, there are only a finite number of £ ¢ D for which f(§) = «. Thus
we see that there exists a subset Dy of D, which can be obtained from D by re-
moving a finite number of points and which has the following property: if £ ¢ Dy,
we have f(£) # «, F(& f(8) = 0, (8F/8Y)(E, f(£)) ¢ 0. Making use of the
theorem on implicit functions, we conclude that f is holomorphie at every point
of D, . On the other hand, f is clearly continuous on D since D differs from D
only by 2 finite number of points (which are therefore isolated points in D), it
follows from a well known theorem in the theory of functions of complex varia-
bles that f is meromorphic on D. '

We can find in D an open dise I of center O and radius »' > 0 in which f
has no pole except perhaps at 0; inside D', we may represent f by a Laurent
series Q.

o =2 af A\

P \

which converges everywhere on D’ except perhaps at 0. On thé other hand, the

p-adic completion B of B may be identified with the field of formal power series
in = with complex coefficients (II1, §3), and y admits the’ representation ¥ =
S . ala’ in R. Assuming thaty # O and that &= 7'5\\0; te # 0, we shall prove
that m = m’ and az = ax for every k = m. .

. When the element y ¢ R and the meromorp]ﬁc}unction f are in the.rela.tlon
described above, we shall say that f is the representing function.of_ gyn DI
f and ¢ are representing functions in D of eléments y and 2 of B, 1t 18 c;lear that
f — g and fg are representing functiong“in D’ oy —¢ and yz respectively (by
f — ¢ we mean the unique meromorphic function on b who§e 'va,lue at-a.ny
point £ ¢ D’ which is not a poleobeither f or ¢ is /(&) — 9&); similar definition
for fg). On the other handy i(h’is any integer, the representing function of =
in D' is obviousty £. Thisbeing said, the integer is chsfxactenzed by the fact
- that the function &””‘)f(g)'.tékes a finite value #0 ab 0, viz. o . It follows that

- & s true
™y — a, has p as.a gero, whence m’ = M, G = Gum - Assume that it 15 tru

that a; = af for mn& k& < n, where n is an integer > m. The representing func-
__&’_— Mgk n akEk) But the

ti()ll Of x—'n(y - mSken a,kxk) iS the ful].Ction E-_“(f(z) - ; .
element (@ — > mgicn aux’) takes the value o 8t y, while the flincigon
EFEE D msian @) takes the value d» ot 0; it follows that @x = dn. ur
assertionis thereby proved.

"Thus we have proved

TrBorEM 2. Let b be a place of R and & @ uniformizing variable at - f;@t y be
an element of R, and lety = S aya* be the formal power serics nt uéh;\cr frepri;
sents y in the Y-adic completion of R. Then there exists @ neighbourhoo mOf K
S on which  has no pole and such that, for any & € N except perhaps 0, the Serees

e @ (2(Q)) converges to y(a).

We can make use of Theorem 2 1o ‘study

the local nature of the mapping of |
S into ¥ given by an arbitrary element of B. :
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TuEOREM 3. Lef « be a non constant element of E and let p be a place of B. Denste
by e the ramification index of p with respect to C{x), Then every nesghbourhood of
b on the Riemann surface of R contains an open neighbourhood N of p which has
the following properties: x maps N onto an open subset x(N) of Z; b is the only
point of N which is mapped wpon x(p) by z; if £ 45 any point of 2(N) other than
z(p), then there are exactly e points of N which are mapped upon £ by x.

If2(p) # w,wesety = z — z(p);f z(p) = o, wesety = 2. In any case,
we have v,(y) = e. Let ¢ be a uniformizing variable at p, and let Ny be any given
neighbourhood of p. Then it follows from Theorem 2 that there exists a neigh-
bourhood N, of p which has the following properties: N, is contgiped in Ny ; ¢
maps N; topologically onto a dise & of center O in the complex pline; if g ¢ N,
then y(q) = f(#(g)), where f is a holomorphic function on Ayghaying 0 as a zero
of order e. From the elementary theory of functions of a(complex variable, it
follows that there exist open neighbourhoods U and; A} ‘of 0 in the complex
plane with the following properties: A: is eontained ighd; ; 0 is the only zero of
Fin A, ;if £ is any point 0 in U, then there arg“eXactly e points of A, which
are mapped upon £ by f. If N is the set of pointé\i e N, such that y(q) e U, then
N 1s an open neighbourhoad of p contained in W, and has the properties stated
in Theorem 3. o\

We shall now define the notion of mexdvmorphic function at a point p of the
Riemann surface 8 of R. Let f be aupapping into £ of some neighbourhood of
pin 8, and let 2 be 3 uniformizing, yatiable at p. It follows from Theorem 2 that
there exists 2 mapping f, into Svof some neighbourhood of the origin in the com-
plex plane and a neighbourhged N of p in S which satisfy the following condi-
tions: f is defined on ¥; fisdefined on x(N); we have f(q) = f.(x(q)) forall g e N.
We shall say that f belarrgs to the class 9N(p, ) if, for a suitable choice of N,
J= is meromorphic dn Z(NV). Although the function f. clearly depends on the
choice of the unifgrmizing variable z, we shall see that the class D(p, z) does
not. Let &’ be. Any other uniformizing variable at p, and let the neighbourhood
N’ and the function f.- have, with respect to o, the same properties as N and [
with respedt“to z. On the other hand, replacing the consideration of f by that
of theduhction «, we obtain a function z.. defined on & neighbourhood of 0 in
the €omnplex plane. 1t is clear that the equality 7,-(§) = f=(xz(£)) has a meaning
and is true whenever [ | is sufficently small. Since o ¢ B, the function z. 13
meromorphic on some neighbourhood of 0, and, since 2(p) = 0, z,.(0) = 0. Thus
we see that, if f, is meromorphic on some neighbourhiood of 0, then the same is
true of fr , Le., we have DM(p, ) C M(p, ). We would prove in the same Way
that ON(p, =) < My, ). Our assertion that the class My, ) does not depend
on the choice of the uniformizing variable  is thereby proved. We shall set
M) = M(p, 2); any mapping belonging to the class M(p) is said to be a
meromorphic function at p. If  is a mapping of an open subset U7 of S info Z
which is meromorphic at every point of U7, then f is said to be meromorphic 6%
U. H furthermore f(U) does not contain the point ec, then fis said to be holo-
morphic on U. It is clear that any meromorphic mapping of U is also a continu-
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ous mapping. Every = ¢ B provides a meromorphic mapping into Z of the
whole Riemann surface S; we shall see that these are the only meromorphic map-
pings of S.

Turorey 4. The Riemann surface S of the field R 15 connecied, and every mero-
morphic mapping of S into Z 18 produced by some element of B,

Let f be a meromorphic mapping of some open subset U of S. Then a. place
pis called a zero of fif f(p) = 0,2 pole of £if f(p) = . The poles of f arc isolated,
and, if U is connected, the same is true of the zeros of f unless £ = {0}-
Tor, let p be a point of U, and let © be a uniformizing variable at p. Then there
exists a neighbourhood N of p, contained in U, which is mapped topologically
by z onto a circular disc A of center 0in =, and we have, for g e N, flo) = Fiw(),
where f* is a function defined on A and meromorphic on some neighbpug'hood of

0.1 pisa poleof f, then 0 is a pole of /¥, and there is & neighbourhgéd of 0in A
in which f* has no other pole than 0, which proves that pis an isolated pole of 1.
On the other hand, if every neighbourhood of p contains & zero, ofyf distinet from

‘3, then cvery neighbourhood of 0 in A contains a zero of _f’f(distinc’s from 0, from
which it follows that f* is constant and equal fo 0 ondeme ‘neighhourhood of 0,
ie., that f maps some neighbourhood of p in U upon {0} This shows first that
the set of zeros of f in U is relatively closed in U'and secondly that the set of
non isolated zeros of f in U is open. If U is dénpected, the set of non isolated
zeros of f in U, which is relatively elosed and opén in U, coincides with the whole
of U, which proves our agzertion. NP

Now, let f and g be meromorphie mappings of the same open connected sub-
set U of S. If g(U) = {0}, then wg gebf — g = f. Assume nOW that g(U)# {0},
and denote by Uy the set of poifits’'of U which are poles of neither f nor ¢ and
which are not zeros of g; T8 therefore an open set. It p e Ur, then we get
u(p) = F(p) — g(p), v(M\ ;f(p)(g{p))'l. Tt follows easily from the definitions
that « and v are meromgrphic MappIngs of Uy . Let now.p be a point of U m_)t.
in U, ; we select a uiformizing variable z at P and a neighbourh.ood N of pin
U which has the/£ollowing property: ¥ is the only point of N not in U1 ; © maps
N topologicaliy>onto an open disc A of center 0 in =. If q N, we set J(@) =
FHala)), g (q)'.‘~:= g*(x{q)); the functions f* and g* are then m_eromorphlc on some
neighbgughood of 0 in A. We may therefore write, for £ > 0in 4, * (E)*= g7 ),
g () = )9¥ (5), where h and k are integral exponents, while 7 and ¢7 are func-
tions defined on A which are holomorphie on some neighbourhgcd of 0 and take
values # 0 at 0. Let A’ be a disc of center 0 in which fi and g1 are everywhere

holomorphic and 0. If £ is any point 70 of A, we set
CuFE) = — @ = FEIRE - £ )
e = FEOEET = B (T EN T

where [ = max {h, k}. We see immediately that the functions w1 , of defined in
this way can be extended to functions ¥, v* defined on A’: and memn}orphlc 03
some neighbourhood of 0. We set a = 2*(0), 8 = v*(0) (with o and § in Z), a0
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we extend the domain of definition of the functions u and », previously defined
on Uz, by setting u(p) = o, 2(p) = 8. It is clear that the extended functions
defined in this way are meromorphic at p. Doing the same thing for all points of
U — Uy, we extend 4 and v to meromorphic mappings of U, The meromorphie
mappings of U which extend  and » are uniquely determined, as follows imme-
diately from the continuity of a meromorphic mapping and from the fact that
Ul is everywhere dense in U. We shall denote our extended mappings by f — ¢
and f/g respectively. If Op denotes the mapping which associates 0 to every
. point of U and 1, the mapping which associates 1 to every point of U, then we
define —g by —¢ = 0y — g and (if ¢ % 07) ¢ by (1v)/g. We define f + g
to bef — (—¢) and fgtobe flg™"y " if g # Oy and Oy if ¢ = Op. Thus we have
two laws of composition, addition and multiplication, in the set 9N of mero-
morphic functions on U. It is easy to see that these laws of canfposition satisfy
the axioms for fields. Let us for instance c¢heck the associ@tivity of addition.
Let fi, fa, and f; be elements of ON(T). Tt is easy to (:I;ef:k on the base of our
definitions that (i + f2)(p) = filp) + fx(p) for any p &8 which is not a pole
of either f; or ;. Thus (f, + f») + fz and f; + (f2 Zfa»coincide on the set Us of
points of U7 which are not poles of any of f; , f2, s . The set U7 being every-
where dense in U, it follows from the continuity ef meromorphic mappings that
i+ )+ =f+ (2 + fo). The other :ﬁ(i’oms would be verified in a similar
manner, O\

It follows that the set DN (T7) has thestricture of a field; if we identify any ¢ € ¢
with the constant mapping Which'aé‘signs ¢ to every point of U, we see that ¢
1s & subfield of ON(T). On the other hand, every element z of B defines a func-
tion » — 2(p) belonging to ML), and we obtain in this way an isomorphism of
R with a subfield of D(T7) s¢hich coincides with the identity on C.

- From now on, we shall’ denote by U & compenent of S. Since S is clearly
locally connected, U is open. On the other hand, since U/ is closed in 8§, it is
compact. We Shall.\s'éc that a meromorphic mapping f of U which has no pole 48
necessarily a copklont mapping. For, sinee U is compact, the continuous real
valued functiond}f | must reach its maximum at some point po e U, Let o be &
uniformizing\Variable at p,, and let Ny be an open zo-disc of xg-center po. If
P e No, wB may write f(p) = (z(p)), where f* is holomorphic on & neighbourhood
of 0 i;rg)(Ny). The function | f* | has a maximum at the point 0; it follows that
F*has a constant value ¢ on some neighbourhood of 0. The point b, is & non iso-
l{a{.;a;—:ad zero of f — ¢, from which it follows that f — ¢ maps the whole of I upon,

Let  be a non constant element of R of which we shall furthermore assume
that, if 8 — U is not empty, = has at least one pole on this set. Let j be any
meromorphic funetion on U. We denote by tr, - -- , ps the distinet points of
U which are poles of either z or f. For each ¢ let ¢; be a uniformizing variable ab

. Pe‘b (1 =14 £ h). We can find integral exponents a; and b, such that ((3'z)(p.) and
() (ps) are both different from 0 and . If k& and I are arbitrary non negative
integers, then (t’&“‘“b"xkff)(pe) is # e, Let p and ¢ be positive integers, and let
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wm0=2ksp 0812 g) be arbitrary complex numbers; we set

P 2
2= 2, Z Mty k.
k=0 1= .
For p in a suitable neighbourhood of p;, we may write z(p) = 2 (t:(n}), Where
#¥ is a meromorphic function on & neighbourhood of 0. Moerover, it is clear that
the Laurent espansion of zF around 0 will be of the form

2{(E) = > Laler Myt )4
r=pajtab]
where o = min {0, a;}, b¥ = min {0, b}, and where each L, ig a linear form-
in (p + 1)(¢ + 1) variables. From now on, W& shall take ¢ to be the gumber
—Y i a¥ (this number is >0 because « is nob constant on U and must - there-
fore have at least one pole on U) and we chall take for p a positive integerwhich is
> —g(P g b7 4 1). Under these conditions, we have (p +)g + D >
—poiael — g2t b5 , from which it follows that the systeril of homogeneous
linear equations Li(- -, Muts ) =0(2iEh mf*l—qb’f < < 0) has
2 non trivial solution. Assume that the numbers Ax: repfesént 5 solution of this
system. Then it is clear that the funetion 2 has no one on UJ. This function 18
therefore 2 constant, which proves that f is algebraic of degree = g over ({z).
Thus we sce that every element of (L) is algebraic over (), and the degree
* of an element of ON(Y) over C{x) is bounded by the number ¢ which depends
only on z. Let n be the degree of B oven C“{x), then we know (Corollary to Theo-
rem 4, T, §8) that n is the degree of thé’;divisor of poles 1 of . Now, 1t is elear that
= JTi: p7¥w, where ' is aqyinﬁégral divisor, whence ¢ = #; moreover, if
U = &, then x has at least pue pole ot in U, whence ¢ < 7 Since E is of
characteristic 0, there exis %n’-element u of B such that B = Clx, w), and
is clearly of degree n ovex (z). On the other hand, considering % as an ele-
ment of DN(T), we se’that it 18 of degree £ g over ({z). Therefore we have
g = n, whenee ¢ S5, which proves that — S. On the other hand, would
ML) contain afiglement f which is not in R, then R{f) would bé algebraic of
finite degree{>" n over C{a), and would therefore contain some element of
degree >ulover ({x), which is jmpossible. Theorem 4 is thereby proved.
REMaﬁﬁ. The connectedness of S eould be proved in 2 ghorter way as fol-
Jows. Wesume for a moment that S would have a component {7 # 8, and let
g be a point of S not in U. Making use of Lemma 1, IV, §1, we see that there
would exist an & ¢ & which admits g as its only pole. Then z would induce.on U a
* meromorphic function with no pole, and would therefore be constant on U.
But thisis impossible; because, # not being in the field of constants of R, for any

¢ € C, z — ¢ has only a finite aumber of zeros.

» .
§3. ON SINGULAR HOMOLOGY THECORY

We shall give in this section & trief statement of the main definitions and re-
sults of singular homology theory. For more details and for the proofs of theo- -

L]
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rems, we refer the reader to the book of 3. Eilenberg and N. Steenrod on homol-
ogy theory, to be published shortly (cf. also the paper by 8. Eilenberg, Singular
homology theory, Ann, of Math,, 1944, vol. 45, p. 407).

We denote by R" the n-dimensional Cartesian space. By 7" we mean the

smallest convex subset of R containing the points e, = (1,0, --- , 0), ey, =
0,1, -,0), -+, .= (0,0, ---,1); thus T is the set of points
(tl.) M )tfﬂ-l)

of R suchthat0 £, £ 1 (1 £4 = n+ 1)and 270t = 1.

Let X be a topological space. By an n-simplex In S 1s meant a gontinuous map-
ping o of 7™ into X, If we take all n-simplices in S as free genbrators of a free
abelian group, then the elements of the group obtained in{this way are called
the n-chains on X. Any n-chain v may be written in theform Dt G0y , Whore
oy, +++ , o are distinet n-simplices, and a;, -+ -, U:p.n}are integers >0 (if ¥ is
the zero n-chain, then we set & = 0). We then say4hat oy, -+ , os are the sim-
plices which occur in v, and that oy oceurs with thewoefficient a;, ; a simplex which
does not oceur in ¥ is also said to oecur with ggefficient 0 in . The union of the
sets of points o:(T") (1 = k& £ h) is called thesel of points of v, and is denoted by
| v |; this set is empty if v = 0. The set, of\points of any n-chain is clearly a com-
pact set. If | ¥ | is contained on some’sybset ¥ of X, then we say that the chain
vyison Y. o\ ¢

The set T° consists of a singléfpoint. Thus, a 0-simplex ¢ s uniquely deter-
mined by giving the point ps o(T") of X. We shall therefore identify the 0-
simplices with the points of X

Ifn=land 1l £ 45'n + 1, we denote by f; the barycentric mapping of
T" into 7" whicl(z4Aps e; 1 upon e;, ifj < 7 and upon ey, if 2 4. Thus
we have fi(h, -2 t) = Dicitilin + Diziti€iirg - If o is an n-simplex, each
of the ma-ppiq,%s of: 1 £i=n+4 1)isan (n —~ 1)-simplex. We set

N atl

S g = 25 (—1D"of)
‘§ . dnml
argilf}%ie extend 3 to a homomeorphism, also denoted by 9, of the group of n-chains
) o‘é\rijj;o the group of (n — 1)-chains. If y is an n-chain, then dv is called the boundary
of v. If v 15 a O-chain, we make the convention that 8y is the number 0.

It can be proved easily that 8{8y) = 0for any n-chainy (if n = 1). Any n-chain
whose boundary is 0 is called an n-cycle. If V¥ is a subset of X , an n-chain is said
to be an n-cycle modulo Y if its boundary is on Y. The n-cyecles are the same
thing as the n-cycles modulo the empty set .

An n-chain v is said to bound on X if there exists an (n -+ 1)-chain ¢ such that
9 = v. If ¥ is a subset of X, then v is said to bound module ¥ if v is of the form
d¢ -+ 71, where ¢ is an (n + 1)-chain while v, is'an n-chain on Y. Any n-chain
which bounds modulo ¥ is an n-cycle modulo Y, but not conversely in general
To bound is the same thing as to bound modulo 8.
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Let Z be the group of n-cycles modulo ¥, and let B be the group of #-chains
which bound modulo ¥. Then the factor group Z/B is called the n-dimensional
homology group of X modulo Y, and is denoted by H.(X, ¥). The group. H.X,
@) is called the n-dimensional homology group of X and is denoted by H.(X).
The elements of Hn(X, Y) are called the homology classes of X modulo ¥ (homo-
logy classes of X M ¥ = #). Two cycles modulo ¥ which belong to the same
homology class modulo ¥ are said to be komologous to each other modulo ¥ (ho-
mologous to cach other if ¥ = #).

If v = S ki @iy, is a O-cycle on X (each p; being a point of X), then a neces-
sary condition for y to bound i for the number 2= @z to be 0. This condition is
also sufficent if X is arcwise connected. Tt follows that, if X is not empty and
arcwise connected, then Hy(X) isan infinite cyclic group. It follows from Théafetn
1, §1 that any connected open subse of the Riemann surface of a field ©f,alge-
braie functions of one variable over C is arcwise connected. N\

Let X and X’ be topological spaces, and let ¥ and ¥’ be subsets\of X and X’
respectively. Assume that we have a eontimuous mapping f of X into X’ which
maps ¥ into ¥'; then we say that fis a continuous mapping ofthe pair (X, ¥,
into the pair (X', ¥’). Let o be an n-simplex on X ; théu\s’is an n-simplex on
X’. The mapping ¢ — fo can be extended to a homothorphism of the group of
n-chains of X into that of X’; we shall also dengte by f this homomorphism.
Then f oaps any cyele modulo ¥ in X upon #neyéle modulo ¥ in X', and, if
the given eycle bounds moduio ¥, then its imagé bounds modulo Y. It follows
that f defines in a natural way & homomorphism (also denoted by f) of H.(X, Y)
mto H,(X', Y. N :

Let ¢ be a coptinuous mapping-of X' into a space X”, and assume that g
. maps Y’ into a subset Y7 of X%, Then the homomorphism of H.(X, ¥} into
H,(X", ¥") which correspox\d'o{ 6 the mapping gf can be obtained by first ap-
plying the homomorphism™of H (X, V) into Ha(X', ') which corresponds to
§, and then the homomofphism of H. (X, Y) into Ho (X", ¥7) which corresponds
to g. O
Two continuous 'r;:;ppings f and 7 of the pair (X, ¥) into the pair (X', V') are
said to be homditepic to each other if there exists & continuous mapping F of the
pair (X X (8], ¥ X [0, 1]} into the pair (X*, Y')such that Pz, 0) = f(z),
Fix, 1) J(x) forall z e X. Tf this is the case, then the homomorphisms of -
H{(X, %) mto H.(X', Y} which correspond to fand f' are identical with each
other. :

A subset Y of a space X is called 2 deformation reiract of X if there exists a
continuous mapping f of X into itself with the following properties: f is homotopic
to the identity mapping (which maps every point upon itself); f coincides with
the identity on ¥;f maps X into ¥. Tf this is the case, then the homomorphism
of H.(Y) into H.(X) which corresponds to the identity mapping of ¥ into X
is an isomorpbism of H.(Y) onto H L(X). In particular, every n-cycle on Xis
homologous to an n-cycle on Y. '

Let ¥ be a subset of a space X. Assume that ¥ contains an open subseb U of X
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such that U < V < ¥, where V is itself an open set (U denotes the adherence
of U7). Then the homomorphism of ¥ KX - U, Y — U)into H (X, ¥ which
eorresponds to the identity mapping is an isomorphism of the first of these
groups onto the second. This statement is called the excision thearem.

Let ¥ be a subset of X, and let ¢ be an element of HoX, V), withn > 0;
if v is an n-chain of the class ¢, then 8y isan (n ~ 1)-cyele on ¥ whose homology
class dc in H, (V) depends only on ¢. The mapping ¢ — de is a homomorphism
of Hu(X, ¥) into H,_,(¥) which is called the boundary homomorphism. If n, = 0,
then we set ¢ = 0 for any ¢ e Hy(X, Y). .

Let ¥ and Z be subsets of a space X, such that Z C ¥. We consider the fol-
lowing sequence of groups: N

{D}? Hy(X, Y), Tty Hn—l(X: Y), Hﬂ~i(XJ Z): Hﬂ-l(Y: Z\),"}'I‘"(X, ¥y oo

Then we have a series of homomorphisms, each mapping'a.group of the sequence
(except the first one) on the previous one. These homofm'érphisms are defined as
follows: a) the boundary homomorphism 4 of H(XY) into H, (Y, Z), ob-
tained by first applying the boundary homomoxphism of #,(X, ¥) into H, 1(¥)
and then the homomorphism of H. () into B, (¥, Z) which corresponds to
the identity mapping of (¥, @) into (¥, Z); 5)the homomorphism of I7,_.(¥, Z)
into H, (X, Z) which corresponds t¢{the identity mapping of (¥, Z) into
(X, Z); ¢) the homomorphism of na{X, Z) into H »1{X, ¥) which corresponds
to the identity mapping of (X » Z)ante (X, ¥). The composite object formed by
our sequence of groups and by ghe' homomorphisms defined above is called the
homelogy sequence of the triplet (X, ¥, Z). The exactness theorem asserts that this
sequence is exact, ie,, that, Nf 4, B, C are three consecutive terms of the se-
guenee, then the kerne;l;o?‘the homomorphism of B into 4 coincides with the
image of ' under the’komomorphism of € inte B,

If Z = g, then e speak of the homology sequence of the pair (X, ¥); the
groups of this seduence are

O B0, -, HoX, 1), Hus(X), Hua(¥), HA(X, V), - |

Assu;us\\tﬁat the space X is the union of a finite sumber of mutually disjoint
opengets'X, , --- | X, . Let Y be & subset of X;set ¥, = ¥ N X, (14 m)
If\I\ X7 = m, the identity mapping of the pair (X;, Y,) into (X, ¥) defines a
hemomorphism y; of I X, Y.} into H.(X » Y). It can be proved that the homo-
morphisms 9; are isomorphisms, and that H (X, Y) is the direct sum of the
groups n:(H.(X;, YN (1 << m). Thus we see that, in that case, H,(X, ¥) may
be identified with the product 7., H.(X;,Y).

To every n-chain v on a space X it is possible to associate a new n-chain, the
baryceniric subdivision of 7, denoted by subd v. We shall not give the definition
of subd v, but we shall give the main properties of the operation ¥ — subd .

a) This operation is » homomorphism into itself of the group of n-chains;

b) ifyisa O-chain, then subd Y =4

¢) if v is a I-simplex and & = b — a (where a and b are points), then subd ¥
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is the sum of two l-simplices, whose respective boundaries are b, — a and
b — 0y, by being a point of | v | which is called the barycenter of v; '

d) for any n-chain v, we have 8 (subd v} = subd 3v;

g) if v lies on some subszet ¥ of X, then subd v lies on ¥ and is the same
whether we consider ¥ as a chain on X or on ¥ '

f) if @ v lies on some subset ¥ of X, then subd  is homologous toy modulo ¥;
in particular, we see that subd v is homologous to y on | v | modulo | 3y [;

g) if p is an integer =0, define subd” v by induetion by means of the formylas
subd’ v = v, subd”™ ¥ = subd (subd? v); then, if X is covered by a family F of
open sets, given any chain v, there Is an integer p = 0 such that every simplex
occurring on subd? v lies on some set of the family &. N

Let A be a closed disc in the complex plane, and let a be the cefiter of A.
Then {a} is clearly a deformation retract of A, from which it follows\easily that
- Hu{a) = {0} for every n > 0. Assume that A 54 {a}, and let.E be the circurn-
ference of A. Then it ean be proved that He(I") and H(T) aye~bfoth infinite eyclie,
while H,(T)} = {0} if » > 1. The groups Ho(4, T, Hi(A,); and Ha(A, T) for
n > 2, consist each of its zero element only, while Hi(A; I') is infinite cyclie.
Since I' is a deformation retract of A — {a}, we see.that Ha(A, A — {a}) = {0}
if n = 2, while Hy(A, & — {a}) is infinife eyclic.{ _ .

If I iz an interval, either open or closed, thent.(I) = {0} for every n > 0.

§4. PERIODS OF DIFFERENTIALS

We have learned in Chapter VI how to associate to every element z of B a
ditfercntial da of the field B; moreqyer; we know that, provided  is not constant,
every differential of R may be written in the form y dz, with y ¢ . If  and 2’
are non constant elements o{{f, then g

(1) O ydz = (y Do) de’

where D.. is the derivation with respect to &’ in B. _ '

Let U be an Qp@ll\éet of the Riemann surface 8 of R. To every pair (f, )
formed by a mepémorphic funetion f on U and a non constant e]anent a:‘of R, we
shall associate's new object which we shall call a meromorphic differential on U,
with the :eé}:[;.;ention that the meromorphic differentials a,ttached' to the Ipa,u's
(f, x) €nd {f’, «’) will be held identical to each other if and only 1f f = Dz,
where 7, is the derivation with respect to x in R. If U/ = §, then f Isan eleme.nt
of B (Thecrem 4, §2), and we shall then identify the merom(_)rph_lc djﬁ'er’enj;la,l
attached to the pair (f, z) with the differential fde of R, W%llch is permissible
in view of Formula (1) above. In the case where U is an arbitrary open set, we
shall still denote by fde the meromorphie differential att{a,ched to the pair
f,2). f w = fdr and o = f'dz are meromorphic diﬁ“erentlals; on U, an(} if g
is any meromorphic function on U, we set go = (gf) dx, @ + & = 7+ f)dz;
it can be verified without difficulty that these definitions are coherent with our
convention of identification.

Let f dx be a meromorphic diﬂerential.on 17, and let b be a point of U, Let
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¢ be a uniformizing variable at p. Then we may write fdz = (fDa) dt. If § D,z
has no pole at p, then we say that f dz is holomerphic at p. In order to legitimate
this definition, we have to show that the fact that f D,z has no pole at p does not
depend on which uniformizing variable ¢ we select. Let # be any other uni-
formizing variable at p; then fdz = (f Dixr) dt = (f D Dyt) dt’. If we represent
¢ by a power series in ¢’ in the p-adic completion of R, its expansion is of the
form £ = J_pmy axt”, whenee Dyt = 2 kait™ ™, which proves that D, has
no pole at p, and therefore that, if f Dz has no pole at p, then the same is true
of f Dy = f Dy Dyt. A meromorphic differential which is holomorphic at every
point of U is said to be kelomorphic on U. A

Let ¢ be a meromorphie function on the open subset U7 of Spand let z be a
non constant element of B. Let p be any point of U; denote(Dy' ¢ a uniformizing
variable at p and by V an open i-dise of f-center p. Thén we have, for g € V,
9(q) = G(t{a)), where G is 2 meromorphic function on the disc ¢(V). The deriva-
tive @' of G is likewise meromorphic on #(V); set,/for 4 ¢ V, g'(q) = G{(q)).
Then D.tf g’ is 2 meromorphie function on ¥, whc?se value at p we shall denote
by f» . The point f, ¢ 2 does not depend on the olidice of the 1nif ormizing variable
tat por of the set V. For, let £, be any yniformizing variable 2t p, and let ¥;
be any open #-dise of 4-center p. Set g(al\= Gi(ti(a)), where G, is meromorphie
on &(V1). If = e 2(V N Vy), we have GPrE G1(6(7)), where 8(7) is defined by the
condition that 8(:(g)) = #(g) for g ¥ YV1 . Tt follows that G/ () = GL((-)& (7),
where # is the derivative of the I:;b:Ioinorphic function 4. Set g1(q) = Gi{t:(q)) for
q € V1 ; then, since #(i{q)) = (D) (0) (as follows easily from Theorem 2, §2), we
have ¢'(a) = (g1 Dit)(a) for @% V N Vi, whence (¢’ D.2)(q) = (g) Duh)(q), which
proves our assertion, It i€ sasily seen that the mapping p — f, is & meromorphic
function f on U: wa s@ﬂl denote this function by dg/dx (it is easily seen that, if
g € R, then dg/da, a% defined here, coincides with the ratio of the differentials
dg and dz, ie. js'equal to D.g). We see immediately that, if 2’ is any other non
constant clemient of R, then dg/dy’ = {dg/dx) D.x. 1t follows that the dif-
ferential ‘(é‘g}ﬁx)dx does not depend on the choice of z, We shall denote this
meromo\gph‘ic differential by dg. We see easily that, if ¢ is holomorphic on U, then
the same is true of dy.

et f dz be a meromorphic differential on an open set .U, and let U’ be an open

{Rubset of U, If there exists a meromorphie funetion ¢ on 17, such that dg/de = f

6n Uy, then we say that ¢ is a primitive of fdx on U, . If Uy is connected, then
twe prematives ¢, ¢’ of fdr on Uy can differ from each other only by o constani.
For, we can find 2 point p, of U, at which g and g’ are both holomorphic and which
is such that 2(p) % « and that » — (po) is uniformizing at po . Using z — (P
for the ¢ of the definition given above, and observing that D.{¢’ — g} = 0, We
see eaglly that ¢ — ¢ coincides with a constant @ on some neighbourhood of
Do The function ¢ — g — o being meromorphic on U and having a non isolated
zero, it follows that this function s identically zero on U7, , which proves our
assertion,

Now, let w be a differential which is holomorphic on some open set 7. We pro-
pose to define the fntegral { . of w on any l-chainy on I
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Levma 1. Let w be a differential which is holomorphic on an o;ben disc V. Then
o has a primative on V.

Assume that 17 is an z-dise, with « in R, Then it follows immediately from
Theorem 3, §2 that # — x(p) is uniformizing at p for every p ¢ V. Write w = f dz,
and, for p e V, f{p) = F(z(p)), where F is holomorphic an 2{V), Then it is welt
krown that there exists a holomorphie function @ on 2(V7) whose derivative is
F. I we sct g(p) = Glz{p)) (for p e V), then g is a primitive of o,

This being said, we shall first define f,w in the case where v is a4 Isimplex on
some open disc V contained in U. The Q-chain 3y is of the form b — a, where
¢ and b are points of V. Let g be a primitive of » on V. We shall prove that the
number g(b) — g(a) does not depend on the choices of either ¥ org. Leb\V’ be
any open disc contained in U and eontaining |v |, and let ¢’ be a prinditive of
@ on V. Since |v [ is obviously connected, it is contained in sonde)component
W of V N ¥V, and we have seen above that ¢ — ¢ is constaptoh W, whence
g'(b) — ¢'(n) = g(b) — g{a), which proves our assertion. In.\t@is-case we seb

o= o - g S
v A
- N

Let B be the barycenter of the 1-simplex 7. Thenvsubd 7 is of the form 1 + 72,
where vy and v, are 1-simplices such that = " — a, 3y = b — b; . It follows
that we have [y w = [, 0 4 oo 7

Now, let v be a 1-chain such that‘e{fér'y 1-simplex occurring in v lies on some
open disc. If v = 2 h_; asor , where o1, =+ , ox are the simplices ocouring in 7,
we sef, :“.}

& §
N \ f W = Z 453 f o«
" ¥ Fmml ak
PN
It follows immediaj;\e;[):v'from the definitions that we have
\’§“ ' .
‘ f o = f .
RN v ¥ aubdy

Fina}ly,;let ~ be an arbitrary 1-chain on U. The open discs contained in U form
a covering of U by open sets; it follows that, for p Iarge eriough, every simplex
oceurring in subd® v lies on some open dise contained in U. Since we have, for
D' > p,subd”y = subd? ~* (subd® ), the number feuay @ does not depend on
the choice of the integer p satisfying the condition stated above. It is this num-
ber which we call the integral on v of w, and which we der.lote by fyw.

It is clear that the mapping y — [, Is & homomorphism of the group of 1-

chains on I/ into the additive group of complex numbers, and that, for v fixed,

the i : : tion on the vector space (over C) of holo-
mapping « — [, w is a linear function e o for any 1-chain

morphic differentials on IJ. Moreover, we have Jro =
Y on U and any integer p 2 0.
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Lemma 2. Let o be @ holomorphic differential on an open set U of the Riemann
- surface, and let v be a L-chain on U. Set 8y = Doiar audy , where Py, - - y Pr are
points of U. Assume that w admits a primilive g on U. Then we have

j;w = E ax g(Pe).

We select an infeger p = 0 such that every simplex occurring in subd®y
lies on some open disc contained in U, and we set subd® y = > T b,
where o:, -+ - , o, are the simplices oceurring in subd? v, If 80y = by — @, we
have f, & = fupaey @ = Dtw1 Bilg(b) — g(ar)). On the other hand we have
D ra bl — ap) = @ (subd®y) = 3y = g @xdi ; Lemma 2 £ollows immedi-
ately from this,

¢(\A

TeeorEM 5 (Caveny’s Turorenm). Let w be a holomofphic differential on an
open set U of the Riemann surface of the field R, and Eet(-r'.’lqe o 1-eycle which bounds
on U. Then we have [, w = 0. AD

o

Set v = 3y, where ¢ is a 2-chain on U. There'exists an integer p = 0 suchthat
every 2-simplex oceurring in subd” ¢ lies on,sgme open dise contained in U, We
have [y @ = fouvary w and subd®y = Q@}bd” ¢). It follows immediately that
it is suffieient to prove Theorem 5 irbhthe case where v 1s the boundary of a 2-
simplex ¢ contained in some open glis'c”V contained in U. Since w admits & prim-
itive on V (by Lemma 1) and Eha "= 0, the result follows immediately from
Lemma 2 in that case. ON°

™\
N

Lenmya 3. Let T be an@pen. subset of the Riemann surface of R, and let @ be a
Jinite subset of U, Lfat m’a%d ¥" be 1-cycles on U modulo @ which represent the same
element of H:(U, Q)."Theny' — « 4s a cycle homologous to 0 on U.

We consider the-following four terms of the homology sequence attached to the
pair (U, Q),i}\
N\ H\(Q) — Hy(U) — Hi(U, @) — Ho(Q).
Since% and v’ represent the same element of H,(U, @), 8y and 8y represent the

sgngé‘éle_ment of Hi(Q), whence 8y = 8y sinee Q is a finite sct. It follows that
<‘rk' = 7 is & eycle whose homology class in H(U) belongs to the kernel of the

3

komomorphism of Hy(U) into Hy(U, Q). By the exactness theorem, this kernel
is the image of H,(g)}, which is easily seen to contain only its zero element, since
¢ is finite. Lemina 3 is thereby proved.

The notation being as in Lemma 3, let w be 2 holomorphic differential on U,
and let ¢ be an element of H:(U, Q). Let v be a I-chain belonging to ¢. Then it
foliows from Cauchy’s theorem and from Lemma 3 that f, » depends only on¢
:;md o. This number is called the dnfegral of w on ¢ and is denoted by [ @ jigy
1s eapty, ie. if ¢ ¢ Hy(U), then f, » is also called the period of w relative lo ¢
:.[f « and @ are kept fixed, the mapping ¢ — f, w is 2 homomorphism of Hi(U, @)
into the additive group of complex numbers. If ¢ is fixed, the mapping & — Jo @152
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linear function on the veetor space. (over C) of holomorphic differentials on U.
Let U be an open subset of U and @, a subset of @ T4 ; denote by ¢, an element
of Hi(Uy , ©) and by ¢ the element of Hi(U, @) which corresponds to ¢ by the
identity mapping of (U1, Q1) into (U, @). Then it is clear that [o, @ = [o o

Now, let us consider the case of a diffcrential & which is meromorphic but not .
holomorphic on {7, Any point p ¢ U at which w is not holomorphic will be called
a pole of w. To simplify, we shall consider only the case where « has only a finite
number of poles; this is certainly the case when w is a differential of the field
R. Let then P be the set of poles of w (or any finite set containing it), and
set Th = U ~ P. Let Q be a finite subset of Uy . Then J, @ is defined for every
¢ e Hy(U1 , Q). Now, the identity mapping of U into U defines a certain homo-
morphism of I1(U, , Q) into Hy(U, §); we propose to study more closely: this
homomorphism. : : O\

In what follows, F is to denote an arbitrary finite subset of the-gpew'set U
and Q an arbitrary subset of U — P. We eonsider the following fgjqr‘benns of the
homology sequence attached to the triplet (U, U — P, Q)E ~ )

HyU, U — P) = Hy(U — P, @) = BT, Q) ?.fﬁ(’rf, Uv-P)

(the letters 71 , 5, 7o denoting the homomorphisms of the homology sequence).
We know that 5(H:(U — P, Q)) is the kernel of mpand that the kernel of » is
m(HAU, U — P)). O _

Since P is finite, it is easily seen by indugtipn on the number of elemepts o’f P
that we can assign to every p ¢ P a cloged dise D, containing p in its mten'or,
contained in U, in such a way that Dyl ﬂ D, = @ for p 5 0. Let w be: the union
of the sets Dy, p e P. Then the adherence of U — Win Uis eontained in an
open set contained in U — P ¢therefore, it follows from the exeision theorem
that Ho(U, U — P) js isomorphic with HyW, W — P) and Hi(U, U —_'P) to
Hy(W, W — P). The sets Dy being mutually disjoint, H2(W, W — P) is isomor-
phic with the product I lwrHxDs, Dy — {p}), and HW, W — P) with
1L H:(D,, D, — {1}’ Now, we consider the following seven terms of the homol-
- OgY sequence atba\efje’d to the pair (Dy , 0> — {p}):

Hy(Dy) —>H2(1),,\, D, — {p)) = Hi(D, — {9} —>H1(D,)§—>_H1(Du Dy — o})
PN 4 1 )

O™ L HDy — {8)) = HoDs)
2

(the greek letters denoting the homomorphisms of the homology sequence).
We know that Ho(D,) = {0}, Hi(Dy) = {0}; the exactness theorem then shows
that ¢ ig an isomorphism of Ha(Dy , Dy — {p}) with Hi(Dy — {p}). Let C; be the
circumference of D, ; we know that HA(C,) is infinite cyelic. Let vy be a l-cy'cle
on €, whose homology class generates Hi(Cy). It is clear that Cy 18 2 deformation
retract of D, — {p}; therefore, Hi(Dy — {p}) 35 infinite cyclic and generated by
the homology class of v, in Hy(Dy — {p}). It follows that He(Dy, Dy — {p}) is
infinite cyclic; furthermore; since ¢ is the boundary homemorphism, Hy(Dy
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Dy — {p}) is generated by the homology class of a 2-chain 8, on D, such that
08y = v, . This means that Ho(W, W — P) is generated by the homology classes

of the chains 4, for all p ¢ P; the same can therefore be said of (U, v -p).
The mapping # being the boundary homomorphism, we see that the kernel of 4
in H,(U — P, Q) is generated by the homology classes in this group of the chains

- T -

Now, let g be any point < pin D, . Since D, and D, — {p} are arewise con-
nected, the homology groups Hy(Dy) and Ho(D, — {p}) aro generated by
the homology classes of q in these groups. Tt follows that the image of
Hi(Dy, D, — {p}) under £2 15 {0} and therefore that mn,, b,—- {p) =
$1lHhi{Dy)) = {0}, This proves Hi(U, U ~ P) = {0}, and therefere that ¢ maps
H(U - P, Q) onto Hi(U, @). Thus we have proved

LeMMa 4. Lot U be an open subset of the Riemann sur_,"ac&'o}‘ R, L o finile subsel
af U, and Q a subset of U — P, Assignitoeach pe P a closed dtsc D, C U containing
P 1 tts inderior in such o way that DyOD, = fif p = g Dendte by C, ihe circumference

of Dy and by v, a 1-cyele on C, whose homology clasy’ gencrates L (C,). Then the
identily mapping of (I — P, Q) into (U, Q) definésis Homomorphism of Hi(UU — P,Q)
onto Hy(U, Q) whose kernel is generated by the homology classes of the cycles vy in
H{U ~ P, Q). Let 8, be a 2-chain on Dy'stich that 88y = v, , and let d, be the
homology class of 5, in H(U, U ~ P). Pen Hy(U, U — P) is a free abelion group
©n which the elements dy form @ sysiem'ap free generators.

N

CoroLLARY. The notation betng as in Lemma 4, lel v be @ 1-chain on U such
that | 9y | N P = ¢; then thereds @ l-chain ' on U/ — P such that v’ — v is a cycle
homologous to 0 on 17, N

Set @ = |ay|; thg,p'if’b follows from Lemma 4 that the homology class ¢ of
¥ in Hi(U, @) can be tepresented by & 1-chain 4/ on &7 — P. Since Q is finite,
v —yisg cycle hemologous to ¢ on U in virtue of Lemma 3.

This being sad; Tet ys return to the study of the meromorphie differential «
fmd to the notation introduced ahove, If z is any element of H,({/ — P) which
18 mapped-ypon 0 by the homomorphism of H{(U — P) into H,({7) which eor-
responds 6 the identity mapping, then f,, w is called a logarithmic period of -
The egcles v, being defined as in Lemma 4, we see that every logarithmic period of
8 Tinear combination with Integral coefficients of the numbers [, . We shall
show how these numbers may be computed,

. Lot then v be any poing of P, and let D be a closed dise containing 9 in its
Interior and such that ) ) F = {n} We can find 2 uniformizing variable z at
b such that D is an z.dige of z-center p. If we write @ = f dzx, there will exist an
Open a-dise V of r-center b on which f is defined and meromorphic with no po}e
except perhaps at p. It follows that, for qe V, q ¢ p, f(q) may be represented in
the f?l'm flay = 2012, clz(a))? (with r > 0). Denote by f; the meromorphic
function defined on V" by f,(9) = fq) — e-(@(@)™ (for q e V, a 5 p). Then
Judz has a primitive on V. For it isknown that 2 rsicmpa(t + 1) ez (@) )

converges for OVery q = p in V; if we denote its sum by g(q), the mapping
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q— g(g) of ¥V —{p} into Z can be extended to a meromorphic function (also
denoted by g) on V, and we have dg = fi dz. ‘We may assume that D C V. Let ¢
be the circumference of D, and let y be a 1-eyele on € whose homology class gener-
ates H:(C). Then we have J,fidz = 0by Lemma 2, whence .

Lw=c_;j;a:_ldx.

Incidentally, we observe that, if ¢35 = 0, there exists an open disc containing §
on which o has a primitive. :
Now, let a3 , @2 , a3 be three distinct points of C. Denote by V' the set of points
9 ¢ V such that z(g) is not of the form p z{a;), with p real 0. Then tdz
admits on cach V' a primitive. For, if g ¢ Vs, z{q) may be written in the formu
2(61(q) exp((—1)""6,(a)), where r(q) and 6:(q) are continuous real functiens'on:
V., with r{q) > 0,0 < 8:{0) < 2m; the funetion A; defined on V; by\'&(ﬁ) =
log r(q) + (— 1)'*8,(q) is then a primitive of gl dzron V;. I ¢ agdj are two
distinet indices between 1 and 3, we can find a. 1-simplex 7300 such that
80i; = a; — a; and az ¢ | o¢; | , where kis the number betweep &'and 3 which is
distinet from ¢ and j. Then v, = o1 + o= 1 a is a cycle ong, and we have

1 .‘ : . .
sz 2 de = (8:{az) — O(an)) + (Bias) — 31(})) + (Balon) — 6alaa)).
-7/, O
T4 5 j, we have z(a;)/z(a;) = exp (— 1)”285,(95'));' since 0;(c;) and 8;{a;) are both
between 0 and 2, their sum is 2a; whence [ " |

(- [ s = s 2060) + 6409 + (e

-
Since (2(00)/x(a)) (@ (as)/2 (03 (.’(ta{) /z(as) = 1, the sum tu(ne) + Ba(e) + Ba{an)
is & multiple of 2r, Since < ¥i(a;) < 2m, the value of this sum is either 2«
or 4, which proves thatfy; 2 - de = 4-27(—1)"". The chain on + ou + o1
is also a cycle 1, an #Osee immediately that Jyatde=—In & da.

We can find an integer p = 0 such that every simplex oceurring in subd™y lies
on one of the segs\\f(} " let then ¢, = » 7 be these simplices, and set subd."fy =
Zhaar. dgy = by — ¢, we see immediately that

A

\\‘ i exp (j; @ dz) = z{b)/2(cs)

Since v is a cycle, we have E’; - ay(d; — ) = 0, whence exp(fy z7 da) = 1,
which prove that f, 2 di is a multiple of 2x(—1)'". Since the homology class of
7 is a generator of Hy(C), v: is homologous on (' to v, r being an integer, W'henc‘e
W~ 1" = pf, 2 do. Tt follows immediately that r = 1. Replacing if
necessary y by —+, we shall assume from now on that v has been selected in such
awaythat §, o de = 2#(—1)'"". Thiscondition determinesentirely the homology
class z of 4 in H,(C) when D and z are given. We shall sce that z actually does not
depend on the choice of , = being such that D is an z-disc. In fact, let ' be any
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element of R such that D is an z/-dise. Then z’ is uniformizing at some interior
point ¥’ of D. Set z(p') = a; if ¢ = 0, then we have (by Schwuarz’s lemma)
#’ = bz, where b is a constant, whence J Y e = [,a 7y If ¢ 0, denote by
! the set of points q e D such that z(g) is of the form ta, with freal and 0 £ ¢ £ 1.
Then it is easily seen that ™ dz — (z — @)™ dx has a primitive on V ~ I, whence
Jya7ldz = [, (@ — 8)” dz by Lemma 2. On the other hand, there exists an open
set containing D on which (x — a) ™%’ is holomorphic and has no zero. If we de-
note by u this function, we have 0 = [, 4 du = [, g’ — Iy (& — @) dz,
-whence [, 2’ dz’ = [, 27 dr. Thus we see that we may attach to any elosed
disc D a definite generator 2 of Hy(C), where € is the circumference of D. We
shall say that z is the positive generator of H((). It is characterizet by the con-
dition that f; 27" dz = 2a(—1)"* whenever D is an z-dise. A

In the case where w is & differential of the field R, the nufabet which we have
denoted above by e.; is the residue of » at 9 (cf. corollary to'Theorem 6, VI, §3);
this number does not deperd on the choice of x. Weishall see that this is still
true in the present case. Using the same notation a8 above, we observe that
@ — (202, e’ da) has no pole at p. Let 2’ be ahy other uniformizing variable
at b, and write @ = f’ da’; then f' —(E.Tl_,\ci:ci)D@x’ has no pole at p, from
which our assertion follows Immediately if We observe that (3. ii, ca’) dz =
(3, caYDa'de’ is a differential of B The number ¢_; is called the residue
of w at . Thus we have proved O

TrrorEM 6. Let « be a meromorplite differential on an open set U of the Riemann
surface of the field R. Let p bea pointof U and let D bea closed disc containing p in iis
tnterior and on which w has no pole except perhaps at p. Denote by C the circumference
of D and by 2 the positivegenerator of H\(C). Then we have Jew = 22(=1)"",
where p 1s the residue of {mi .

Moreover, using $he same notation as above, we see that the homology classos
of the eycles '}’1‘@’1@7; in H:(C) do not depend on the choice of the simplices
@iy, and thatg Re'and only one of these homology classes is the positive generator
of H,(C), If«q:\belongs to the positive generator, then we say that o, , 0z, and
a3, in thgg tder, determine the positive orientation on ('; if not, then we say that
f , tyghd a; determine the negalive orientation on C. In the first case, we set
efay )Rz, 03) = 1, in the second case &{ay, 0y, ag) = — 1, The following propertics
of this symbol are easily established: e(n, | q, , &) does not change if we per-
form an even permutation of 91, 02, 4, but changes its sign if we perform an
odd permutation; if €' and € are the two components of ¢ —({m} U {&})
then e{ay , 1y, @) is constant on each of the sets ¢ and ", but does not have the
same value on these two sots, '

Let @ be a meromorphic differential on an open set U; assume that « has only
a tinite number of poles on 77, Then it follows immediately from Lemma 4 and
Theorem 6 that the logarithmie periods of o are the linesr combinations with
integral cocfficients of the nurabers 2xr{— 1)”2p, p running over the residues of .
If the residues of w are all 0, then the same is true of its logarithmic periods.
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Assume that this is the case, and let P be the set of poles of won U. Let @ be a
finite subset of U7 — P. If ¢ e H,(U, @), then cis the image of some ¢, e H: (Il — P,
Q) under the homomorphism which corresponds to the identity mappmg of the
pair (U — P, @) into (U, @) (this by Lemma 4}, and, since the logarithmic periods
of w are 0, the number [,  depends only on ¢, not on the choice of ¢. We shall
denote this number by [, «.

TaroreM 7. Let o be a meromorphic differential on an open set U of the Riemann
surface of the field R. We assume that o has only a finite number of poles on U and
that the residues of w at these poles are all 0. Then a necessary and sufficient condi-
tion for the existence of a primitive of « on U isthat Jow = 0 for every z ¢ H{(U}.

We may obviously assume without loss of generality that U is connecj;ed. The
necessity of the condition follows immediately from Lemma 2. No,)assume
that the condition is satisfied. Let P be the set of poles of w on U \Then U — P
is open and is easily seen to be connected, and therefore also_drewise conneeted.
Let 1o be any fixed point of U — P. Then, for any p ¢ U P, we can select a
1-chain v, on U ~ P such that 8y, = » — o . Set g{p) = I.‘;,I; w, We shall see that
¢ is holomorphic on U/ — P. Let p be any point of U5 P, and let ¥ be an open
dise contained in I/ — P and containing p. Then &’admits a primitive g, on V.
If q is any point of V, we can find a 1-chain gr,g}n V such that 8y, = ¢ — b
Then 4y -+ 4y =~ e 15 a 1-cycle on U — P, and 1t follows from our assumption
on « that the integral of » on this cyclelis 0, whence g(q)= g(n) + .|'~.q,q w =
(3} + 0:(a) — gu(p). This formula showsthat ¢ — ¢ is constant on V, and there-
fore that ¢ is a primitive of  on V.Now, let o be » pole of w. Then, the residue
of w at a being 0, we have seen & ab-there exists an open dise W C U 'contalmng
a on which w admits a primiti{e)g, . The set W — W N P being obviously con-
nected, gz — ¢ is constand %uthis set, from which it follows that g can be ex-
tended 10 a function whiéhdis meromorphic on . This being true for every POl_e
of @, we see that g can‘be extended to & meromorphic function on U, which is
obviously a primitive of w. : '

.(§“ §5. THE BILINEAR FUNCTION §(w, w")

Let w an(f o be differentials of the field B, and let p be a place of & on which
we shell\assume that, if it is a pole of one of ‘the differentials « or «', then the
residue 6f the other at this place is 0. Under this condition we shall attach to the
pair (w, o’) and to the place p a number jyw, w'). ' ‘

We first consider the case where res, & = 0. Then we know that, for any in-
teger m, we can find an f ¢ R such that nie — df) = m (Theorem 14, _VL §8)-
We take f ¢ R such that »(w — df) — ) — 1, with the furth?.r gpecification
that, if »,(w) = 0, then »,(f) > O (this is obviously always p_osslble). Then we
shall see that the number res, fu' does not depend on the choice of f. For, let f
be any element of B which satisfies the same conditions as f. Then we have
Wd(F — ) > —pe) — 1 and n(f — f) > 0 in case n(w) = 0 Se{shg =
I =1y it vlg) # 0, we have n(dg) = »g) — 1 (Lemma 1, VI, §8), whence
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7(ge’) 2 0 and res, go’ = 0. If »,(g) = 0, then »,(dg) = vo(g — g(p)) — 1 and
resy ({g — g(p))e’) = O whence res, g’ = g(p) res, o’; but, if res, o’ # 0, then
7o{w) = 0, whence g(p) = 0. Thus we have res, go’ = 0 in every case, which
proves our assertion. We shall define (if res, @ = 0} the number Jolw, o) to be
res, f'. It will be observed that it follows from our discussion that, if »,(w) 2 0,
res, = 0, then the condition »,(f) > 0 is unnecessary,

Belore defining j,(w, ') in the case where resy w > 0, we shall (irst prove that
S, @) = —jy(w, «') in the case where res, w = res, @ = 0. We can seleet ele-
ments f and f’ in R such that vy(w — df) = max {—re(w) — 1, »y(w) + 1},
m{e — df') = max {—ry(w) — 1, #(w’) + 1}. Then we have j,(c, wQ = res, fo'=
res, fdf” + res, f(w' — df’). Since vy(w — df) Z vy(w) + 1, Wé\ave »,(df) =
vp(e). If this number is ‘<0, we have #,(f) = volw) + 1, whene@yw;(f(e’ — df")) 2
0 and res, f{o’ — df') = 0. If »,(w) = 0, we have v(f) 2 @ — df) =2 -1,
. but we have res, (' — df') = 0, and & differential wl;ig@ 3% of order 2 —1 at a
place where its residue is 0 has no pole at this place; it-follows that vy{w” ~ df’) =
0, whence res, f(o' — df’) = 0, Thus we have in afly case 7;(w, ') = res, fdf;
similarly, we have j,(o’, w) = res, f'df, and thesiih of these numbers is

res, (7 df’ + f'df) = xesyd(ff7) = 0,

. . N\
which proves our assertion. 2\

Thus, it is natural to define Irlw, @Hin the ease where res, » = 0 (whence
n(w') Z 0) by the formula j,(e, wh s —7ole’, w).

Itis clear that j,(w, ') = 0 if PISa pole of neither w nor w’. On the other hand,
if f ¢ B, we have j,(df, ') = ves, fo' if res, o = 0 and Joldf, ') = res, fw' —
J(p) resy o if res, ' # 0 (Whence vo{f) 2 0if j,(df, &) is defined).

Now, let  and ' b,aii&fﬂerentials of R which are such that the residues of
either one of them at the poles of the other are 0. Then j,(w, «") is defined for all
places p of B, and i3 5£0 for only a finite number of places. In this case, we 5}3}9*11
define & numbér (o, «’) by the formuls, Jlo, o) = 37, iy(w, w'), the summation
being extended+to sll places of B. The following properties of the function
Hew, &) are Obvious:

a) if j{dyw’) is defined, so is He', 0) and we have j{w', w) = —j(w, «');

b) I8t%" be a fixed differential of E; denote by P the set of poles of ’ and by
'P"\th\e seb of those poles of o' at which the residue of ' is 50; then the dif-
Porentials » having no pole in the set P* and whose residues at all places of 1_3113
set P are 0 form a vector space over the field of complex numbers; the function
@ — j(w, «') is defined and linear on this space;

e) if f ¢ R is such that J{df, &) is defined, then we have

.?(df: ﬁJ’) = - an(p) TES, “"”

the sum heing extended to all places b which are not poles of f (this follows im-

mediately from the.fact that Do Tes, fol = 0; ef. Theorem 3, III, §5).
In what follows we shall denote by:

€ the space of differentials of the second kind of R;
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% the space of exact differentials of R;

P and © two mutually disjoint finite sets of places of K;

@»,q the sct of differentials of R which have no pole in the set ¢ and whose
residues at all places not in P are 0; ' :

%o the set of differentials of elements of B which admit the places of § as zeros.

Then it is clear that j(w, o) is defined whenever «w ¢ €z g, &’ € €o,z ; we pro-
pose to study the properties of this function.

Consider first the case when P and @ are empty, whence €r,¢ = Co,r =
€ ¥ = o= § If e, it is clear that j{w, ') = 0 whenever «’ ¢ §. We shall
prove that, conversely, if «’ is an element of & such that j{w, «") = 0 for all
0 e then ' ¢ §. Let ¢ be the genus of E. Then we can find ¢ distinct\places
b, -, P of R such that the divisor o = P~ ¥ is non special (Lemma 4,
VI, §8). Making use of Lemma 3, VI, §8, we see that o' is congrugnt\ntodulo
t0 & diffcrential which is multiple of a™*; we may therefore assurhe Without loss
of generality that o' is itself a multiple of a”%. We shall then, prove that o’ = 0.
Let @ be any differential of the second kind which is multiple of o, Using the
‘notation of Theorem 186, VI, §8, we denote by a:(w) ad b)) the numbers such
that vy.(0 — (a2 + biepda) > 0 (1 2t = g Then we have

ol + d(a(w)as’ — bi(w)z:)) 212 —ryle’) — L

from which it follows that (@, «’) is equalitores,; (—-a,g(w)x?l 4 bilw)z)e’ =
bi()ade’) — bi(w)ase). Thus we haveafor any o ¢ € which is multiple of a
0 = o, o) = 20y (bilwaew) — Qo )ale))- Making use of Theorem 16,
VI, §8, it follows immediately thatai@’) = bie’) = 0, whence " = 0. _
Consider now the general casés H o e @p,o and if f is an element {')f R which
has no pole on P, then we Kave s (w, df) =3 yer f(B) Tesy w; this is O if 4f ¢ Fe-
Let, conversely o be an element of €o.r such that j(w, ') = O for a',l; we Erq.
Take first « = dg, whéte g is an element of B which has no pole in Q. Then
0 = jdg, o) = — Eq;g ¢(a) res, «’. But we know that there exists an element:
g of B which t -kéé’arbitrarily preassigned values at all places of @; it follows
that res, o' = &‘0} all q ¢ @, whence o ¢ €. If @ is any differential of the second
kind, then thére exists an b e R such that @ — dh has no pole in @ (this follo}vs
for iﬂStﬂﬁl’(}:e\ easily from Lemma 3, VI, §3 and Temma 4, VI, §8). The qga;n?:lty
i, N defined and equal to j(dh, o) + & — dhy @) =0 (the first term is O
beeause dh ¢ § and o e G, the second hecause @ — dh € €r,o)- Making use of
what we have proved above, we see that o ¢ §, whence o’ = df; wl.lere I ’15 an
element of B which has no pole on P Ifwe&Eea, We have 0 = jlw, &) =
ser f(D) res, w. Making use of Theorem 3, 111, §4, we see that we have

S f@)e» = 0

Wwhenever the numbers p(p)(p € P) are guch that Zpe.P P(P)’ = 0. It follows that
the numbers f(p) are all equal to each other; if fo is their commaol value, we
have o = alf — fu) ¢ Br.

The function j defines in a natural way a hilinear function on the product
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€r.0/F0) X (Eo,»/Fr), and it follows from what we have just proved that thig
bilinear function is non degenerate. The space €»,o/F ¢ is of finite dimension in
virtue of Theorem 15, VI, §8. Making use of the properties of non degenerate
bilinear forms, we obtain the following result:

TaznoreM 8. Let P and Q be mutually disjoint finite subsels of the Riemann syr-
Jace of the field R. Let A be a linear Junciion on the space of differentials of B whick
have no pole in the set Q and whose residues at all places not in P are 0; assume
that Mdf) = O for every f ¢ R which admits the places of Q as zeros. Then there exists
& differential o' of B which has no zero in the set P and whose residuyes af all places -
outside € are 0 which is such that Mw) = jlo, 0"} for all » of the dowain of defini-
tion of N, and the coset of o' modulo the space of differentials of dlements of R having
the places of P as zeros is uniguely determined. "\

N
§6. DEFINITION OF THE INTERSECTION, NUMBERS

Let P and @ be mutually disjoint finite subsets ‘(Sf'the Riemann surface S of
the field B, and let ¢ be any element of H,(S - PvQ). Define the space Ep,q a8
in §5; then [, o is defined for every w e €z, o andthe mapping w — [, w is a linear
function on €, ,. Set 3¢ = D wee af{q)a; I;k@n, if the element f ¢ B has no pole
on &, we have f, df = e a(0)f(a) (Lettma 2, §4); this quantity is 0 if § admits
the places of Q as zeros. Making use ofTheorem 8, §5, we see that there exists
a differential w, ¢ &g p such thag oo

L

*

) ,.Ij:w = e, w)

for all w e §x 4. Fur[:,herigx\c:re, the space §, being defined as in §5, the coset of
w. modulo Fp is unjqrtely determined; we shall denote this coset by 2(c).

Let generally 0 Berny coset of the space of differentials modulo .. Then it
is clear that, fon any place p, the differentials belonging to @ ail have the same
residue at pypbis number will be called the residue of 2 at v and denoted by
resy £2. We ghiall determine the residues of the coset Q(c) introduced above. Since
@ € o i the residues of ©(c) at all places not in Q are 0. If an element f e B has
no le’Q‘bn the set Q, then we have

o\ ¥
£

S weal®)f(a) = f & = jloe, df) = Feq (res, w)f(a).

Since we can find an element J e R taking arbitrarily preassigned values at the
places of @, we see that res, 2{e) = a(g). Thus we have proved

THEOREM 9. Let P and Q be mutually disjoins finite sets of places of the field B,
and let ¢ be an element of Hi(S — P, Q). Then there exists a uniquely determined
coset (c) of the space of differentials having no pole on P and whose residues ot all
places not in Q are 0 modulo the space of differentials of elements of R having the
elements of P as zeros such, that the formula f, = Jles. , ) holds for any w. € a(e)
and for any differential o having no pole on Q and whose residues at all places not
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in P are 0. If q € Q, the residue at q of a differential of the class Q{c) s equal to
the coefficient of q in de. _

Tt follows immediately that the logarithmic periods of any differential of the
class Q(¢) are integral multiples of 2x(—1)"". _

The mapping ¢ — @{c) is clearly a homomorphism of Hi(S — P, Q) into the
additive group of Ee,»/ . Furthermore, we sec easily that the following is

true: let P’y and @ be mutually disjoint finite subsets of S such that @ C @ 4nd

P O Py, and let ¢ be the element of Hi(S — Py, €1 which eorresponds to an
element ¢ ¢ H1(S — P, Q) by the identity mapping of the pair (S — P, Q) into
(8 — P1, Q); then §» C Fr, and (c,) is the coset modulo Fer, which contains
f(c).

If P is any finite subset of S and v a 1-chain on § — P, we shall set ,{O\

N\

v, P) = 9() RO

where ¢ is the element of Hy(S — P, | 8y |) which is representadflfy +. Then, for
s fixed P, the mapping v — Q(y, P) is easily seen to be a-homomorphism of the
group of 1-chains on § — P into ®/Fr , where D is the space of all differentials.
Moreover, we have @ (subd v, P) = Qfy, P). ) NN

I © is any coset of differentials modulo §» and if.the’elements of € belong to
€o.» (where Q is a finite set with no element i sommon with P), then fo o is
defined for every ¢ ¢ Hy(S — @, P) and for e¥ery @ ¢ &, and the value of this
integral depends only on ¢ and €; for, if f is.an element of B which admits the
places of P as zeros, then [, df = 0 by Lé’ﬁn’ma 2, §4. The number f w is called
© the tntegral of @ on ¢’ and is denotedchy T . _

Now, let ¢ and ¢’ be elements ﬁH\;(S — P,Q)and I:fl(S — @, P) respectively.
Then [, Q(¢’) is defined. The m}m er _

oY 1
\.:3‘.(6,6) = Wj; (e

is called the interse%«i’é}i number of ¢ and ¢

Trrorem 10, el P and Q be mutually disjoint finile subsels of the Riemann
surface S of thevfield R, and let ¢ and ¢ be elements of Hy(8 — P, Q) and Hi(S - @
P) respectipelyy, Then the intersection number i(e, ¢’} i3 an tnteger, and we hc_we e, ¢)

= w—ile, Y. If ¢ and ¢ can be represented by L-chains v and ¥ respectively such
that |y | N |y | = @, then i(c, ¢) = 0. -

Let « and o’ be differentials belonging to the cosets Q(¢
Then we have J, @(c') = j(w, «'), whence (e, ¢) = 2x(-1)

) and ©(¢") respectively.
1) 7j(w, &), This

proves the formula é(c, ¢/) = —i(¢; €}
H v and 4’ are 1-chains such that : _
(1) Iy Ny =8 |Yinjal=2%

then we denote by i(y, v') the number i(c, o), Where ¢ is the' homology clas:i 01f
vin Hy(S — | ay'|, | &y [) while ¢ is the bomology class of ¥'1n H(S = [ov),
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| 37" ]). Then, cleauly, ily’,v) = —ily, v} and i(subd v, %) = i(y, ). Moreover,

I v s fixed, it is easily seen that the mapping vy — #(y, v’} is a homomorphism
of the additive group of 1-chains satisfying the conditions (1) into the additive

group of complex numbers.

We shall first consider the following special ease: y and v" are I-simplices which
lie on open discs V and V* respectively such that V N V' = @; under these condi-
tions, we shall prove that i(y, v') = 0. We may of course assume that 8-
- (VU V') contains infinitely many points. We set oy = b — aq,dy =0 — ¢

(with o, B in V, o', ¥’ in ¥’). We can find elements z and 2’ of B such that V
is an z-dise, V” an z’-disc, and z(a) = (') = 0. If £ e 2{V), %€ denote by p(g)
the point of V which is mapped on £ by z, and we construct al-simplex v; on ¥
such that oy = p(£) — a. Since Hi(V) = 0 and o and ¢ afe et in V, it is clear
that all simplices v; satisfying our conditions represeutthe sume element of
Hi(8 — ({o} U (¥}, fa} U {p(&)])) and therefore &hit the differential class
S(ve, {a'} U {6'}) depends only on £; we shall defote this cluss by 2. Then
2ve, ¥') = =iy, 73) is equal to the product ke (2r(— 1) of the integral
on v’ of any differential of the class Q. N
If gis the genus of R, we can find g disti ebpoints nty, -+, myy of S — (VU )
such that the divisor b = 1 «- - m, ision special (Lemma 4, VI, §8). By the
theorem of Riemann-Roch, we have UWoe') =g — g+ 1 + 8(w) = 1 (sinee
b i non special), and l{a'b'v;") Sy ~ 2 — g+ 1+ 8(a 0 M) = —1+
8(a"""6"ty). The first, formula 8hows that the only multiples of vg" in R are the
constants, whence I(a'tyg )52 0, and the second formula then shows that
3(0”H ) = 1. Let ¢ bea basic element of the space of differentials which are
=0 (mod o"'p"y,), a,n@i:l‘et ™, be a place contained in .S — (17 U V) and which
15 0ot 2 zero of {y, We'set b = myb, ; then we assert that there exists in O & dif-
ferential w; whichd3)=0 (mod p 2 '(p(£))™), and that this differential is uniquely
determined if\g{g 0. Let wf be any differential of the ¢liss ;. For each place
b of R, we ganfind an element fr € B such that v,(wf — ¢f,) = —1 (Theorem
14, VI, §8?:‘Let us try to find an J € B which satisfies the following conditions:
if p isﬁdﬁ‘erent from o, ¥, o, my , - - , 1t , then »,(f — f,} = 0; the numbers
vor (W (f) are > 0; wehave il ~fu)z —10 < j= 1;;}_ Maulcing use of The-
e @}n 2, I, $5, wesee that this iy certainly possible provided there exists no differ-
rent;al Of_{?* W]ijh i8 =0 (mod ¢ 5'v). Such a differcntial would then be amul-
tiple of a5t and would therefore be constant scalar multiple of ¢ ; it would
also have m, as 2 zero, which is impossible since m, is not a zero of { . The exist-
ence of an element f ¢ R satisfying our conditions is therefore established. The
pf)lnts a: and b being zeros of fy 0§ ~ df = wis in the class 9: . Since gei?her
om0 o a0 ) 2 2 henever s 5 phe i
" the;1 the, e 'd’ ¢ » While Pr_n;(we) 2 ~—2;if pis distinct fropl a, D(E_): ? r
25 sldue of o at p is O (because w; ¢ ), and the inequality n(«) =

—1 implies v,() = 0. This proves that w; is multiple of v~ (p(g) T I o

is any differential of the elass Q; which i : 2,1 ! then wp —
i5 of the form dp, wheee t 1s multiple of v *a”(p(£))",

1 . . 05,
¢ 18 an element of R which admits o’ and b’ as 2
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Ifg#0,1e, p(§) # o, then a and p(%), which are poles of order =1 of wp — wp,
cannot be poles of de, which shows that ¢ is multiple of a’b’v~* (this argument
assumes that o’ # 0'; if we had o' = ¥, then o’ would be a cycle on V7, and
therefore homologous to 0 on ¥, and the equality ¢(y, v") = 0 would be obvious).
Wehave 0’0 ) =g —1—g+ 1+ 3(a’ 0" *p) = 0, whence ¢ = 0, and
our assertion is established. The class Qy obviously contains the zero differential ;
we shall set wo = 0. _

Now, we propose to compute the value of the element ws/dz’ of B at a poit
¢ ¢ V' distinet from o’ and ¥'. It is clear that I(g'a’b'v™) = g 'bv ") = 0,
whence, by the Riemann-Roch theorem, 8(g" "o/ 15 tg) = 1 and E(q’_ia"lﬁ’“l n)=
2. Let ¢,- be a differential #0 which is multiple of _q"la’_lh’_lvg since

8o’ o) = 0,

Q' is a pole of order 1 of -, whence resyly # 0; multiplying & by .a,\'sili&ble
constant, we may assume that resy {o = 1. Takea differentizi which fs.multiple
of ¢ 0’ 'p and which is linearly independent of o ; subtracting from this
differential a suitable constant multiple of ¢y, we obtain a di erential 7, which
is multiple of q"%a’*0" b and which admits 4’ as a pole of*order 2 and residue
0; multiplying this differential by a suitable constant, ‘We may assume that
velny — (2" — /()" da’) = 0. It follows imme%ig:tey from the definition
of the class Q; that we have N '

flow ) = [

™
Ny Y

AL

Now we prove

Lanois 1. Let o and o be diffaropials of R and m a place of B. If va(@) +
va(e') = —1, then the number Fulw, o) is defined and equal to 0.

It is clear that m ca-nnot{“l'ge'a pole of both & and «', which proves that jule,
«') i3 defined. Since jm@;'w’) = —jale/, @), We may assume that »a(w) = 0.
Let then y be an.clemient of B such that vale — dy) = — vale) — 1 and
7a(y) > 0; then We\\hﬁve ruly) = valdy) + 1 (Lemma 1, V1, §8) and ”m(d?{) =
i rafas, pofoos dy)] B —ra(s) — 1, whenoe su(ys) = 0 a0d dules ) =
Tesy o' =.0,) : ]

Tt folldws from Lemma 1 that o is the only place y for which jalees )
may be 520, Since » (1, + A& — @) 20 and ja , ne) = —i000 s 98
we have .

s ma) = xese 5 gy = @/

by the corollary to Theorem 6, VI, §3. Therefore, we have

{wy/dz' )0} = L : Pqs
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I.eaving q' fixed, this formula shows that {we/dx"}(0"), considered as o function
of p(§), is a primitive of .. in V; thus we see that, for any fixed ¢/, (we/dz")q")
is 2 holomorphic funetion of £ in (V) whose derivative js

dﬁé((wf/dx')(qf)) = (ne/dz)(p(®)).

We shall now prove that (wg/dz’)(q’) may be expressed as a holomorphic fune-
tion of the pair (¢, '(¢)) ¢ (V) X 2'(V’). To do this, we observe that o =
wg/da’ is an element of B whose divisor of poles is of bounded degree; it follows
that the number of points q' ¢ ¥’ at which vy takes any given value is bounded
independently of £ If ¢ is any point of ¥/, v:(q"), which is a h¢lamorphic func-
tion In 2(V), remains bounded when ¢ remains in any closed.\disc D < =(V).
Making use of a theorem of P, Montel (Legons sur les fa?n\illes\ normales de fune-
tions analytiques, Paris, Gauthier-Villars, 1927, pp. 67%end 70}, we conclude
that the functions v;, £ ¢ D, form a “normal family’?, ¢, a relatively compact
set of functions in the topology of the uniform chi?ergence ON EVEry compact
subset of V. It follows that, if £ & , -+« , £,530) ‘are points of (V) such that
£ = liMyw £, , then v, converges to v; uniformly on every compact subset of V",
This means that #:(¢") is & continuous funetion of the pair

o _
& 2'(a) V) X 2/(V").
. This function, being a holomorpl;ipffurﬁlction of either one of its arguments when
the other is fixed, is a holomorphie function of the pair (£, 2'(q")). Write »:(q") =

0(¢, z'(q')), and let B(%, «') beithe holomorphic function of  and ' defined by
the conditions A

0O o) = 0, 2), O 0) = 0.
Then it is clear thag
Re) [, e = 06 zwmy).

."\.‘¢
This i;s\ihé‘ number which we want o prove to be 0. Now, 80/a¢ is, for ¢ fixed,
a primitive (with respect to 2”) of 80/0¢(8, =}, whenee
4 ~\’ ¢

\"\;V 30/0£02' (8, ') = (49./dz)pip,.

We shall give another expression of this number. The degree of the divisor
((EY v s —¢; 1t follows immediately from the theorem of Riemann-Roch
that there exists a ug ## 0 in R which is multiple of this divisor. Since [(a/'v ™) =
0, ug admits p(¢) as a pole of order 1 ; multiplying u: by a suitable éonstant, we
may assume that (x — £)u; takes the value 1 at p(#). The sum of the residues of
uyny- 18 0 (Theorem 3; ITI, §5); we see immediately that the only residues of
#ne- which may be =0 are those at p(&) and ¢’. We have

TeSyey Uemyr = TSy (T — &) ny = (g/ dz)(p()).
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Remembering that v (5, — (&' — 2'(¢))"dz”) = 0, we see easily that
resy ugne = (dug/dz')(g).

Thus we obtain the formula

TO (e () = —(du/ds))

gz’ ™ ’ _
This formula has been established for the case where ¢’ is different from o’ and
B'; but it is also true when q is o’ or b’ because both sides are continuous fune-
tions of q'. Now, we have 0 = u(b') — uga’) = [o-{due/dx’) da’ whenee

d G = i (' - ,
% O, /(8)) ~ 8 0) = o (O, (1)) =0 \

and this proves that [, w; does not depend on £. Sinee wy = 0, Wwe have fy: o =0
for all £, whence ify, ') = 0. ) ' % Dy

Now, assume that v and 4 are arbitrary 1-chains such that |$ |7 | = 8.
Since |y | and |4’ | are closed sets in the space S, which is compact and there-
fore normal, we can find open sets U and U" such that | w3 QU, |¥' | €U, and
UN U’ = B. The sets U and U can be covered by the open dises which are eon-
tained in them; it follows that we can find an inte ef/p = 0 which has the f?l'
lowing properties: every simplex occurring in stbd” v lies on some open dfsc
~ contained in U, and every simplex occurring in' sitbd” v’ lies on some open dllSG
contained in T, If subd® v = Dommi @ik ,hi® simplices i (1 = k = A) being
those which oceur in subd” v, and simﬂqr}jfsubd? ¥ = X g asor , then we have
W, ) = Dby Donrs apani(or , on) =0 _ S

Finally, we have to prove that(y; v') is an integer whenever it is defined.
Every point of | v | is then injérior to some closed dise which does not meet
| 8y’ |; it follows that there Sxists an integer p = 0 such that every simplex

occurring in subd® y lies gn\the interior of some closed disc which does not meet

| 8y [. Set subd® y = Yueeh Gsor , Where oy, - -, 04 8TC the simplices occurr;:lg
in subd” 4. Then the/get | 8a; | U -+ U | dar]is finite and does ItOt meet | 3y |;
it follows that th‘aﬁe"exists a chain v which is homologous to v on S — |8y |
modulo | 8y’ ,aﬁd\which ison 8 — Uty | 8o | (cf. Corolla;r;:* to Lemma4, §4).
We have i(y:3t) = i(y, v1), i(subd” v, 1) = b asilox , v1). Thus we see th:;
it is suffiient to prove that iy, ¥} is an ineger in the case where | v | is contain
in the int&ior of a closed disc D which does not meet | 89" |. Let tl:;?;:t_c;: be a
differential of the class Qfy, | 3v' |). We have ity, v) = —(2r(=1) ). fc*'ﬁ’,
where ¢ is the homology class of v in Hi(8 — foy |, [ ey ). Letc be an interior
point of D; then ¢’ contains a chainyz on § — ([ 8y [ U {¢}) (Corollary to Lemma
4, §4). On the other hand, it is clear that, if V is the interior of D, then 8 —* v
i a deformation retract of § — {c}. It follows that the homology class ¢ hzf
vz in Hy(8, | @y’ ]) contains a chain y"on 8 — V. Let ¢” be the homo.logy ::) _:a
of ¢ in H,(S — |8y |, | 8y |). Then, since v Ny = #, we have t(%;r =
Qie, forw = 0. On theother hand, ¢/ — ¢” can be represented by a eycleyz — ¥

N\
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which is homologous to 0 on 8. It follows that for—w i3 a logarithmic period of
w. The residues of « being integral numbers, in virtue of Theorem 9, we see that
Joow = fsorwisan integral multiple of 2w (— 1), Theorem 10 is thereby proved,

§7. GEOMETRIC LEMMAS

LEvMa 1. Let D be a closed disc on the Riemann surface S of the field B, and
Tet O be the circumference of D; let ¢ be a 1-cycle on C whose homology class is the
positive generator of Hi(C). Let P bea finite subset of S which has no element on C,
and let ¢ be an element of H1(8, P). Denote by z the homology class of { in Hi(S — P)
and sel 8¢ = Ep.pa(n)p; then we have i(z, ¢) = Z,.pnpa(p).

Let v be a 1-chain of the class c. Select a fixed point po e 1 £¢, and, for each
p e DN P, let o(p) be a 1-chain on D — C such that 3e(3f= o — ». Then we
have, for v e DN P, i(5, o{p)) = 0, whence (}, v) = i(grr ¥ X peonea(pa(d).
The only point of D occurring in 8(y + 2 smdra(P}otv}) is o, and B
occurs with the coefficient D _ymnra{p). Let « beta 'differential of the class
oy + > seonza(p)o(n)) (cf. §6); then we ha\je.f by Theorem 9, §6, res,w =
2 vepnr 6(p) and res,0 = 0 for all q # pim D. It follows by Theorem 6, §
that [, @ = 20(—1)" 3 sone alp), and Lemms, 1 follows directly from the
definition of intersection numbers. . *

if o and b are distinet points of*the circumference €' of a disc D), then one
and only one of the two compopents of ¢ —({a} U {6}) has the property that
&{a, t, b) = 1 for all points ¢ of this component (cf. end of §4); the adherence of
this component is called thé’jms‘itiue arc determined by a and b on C.

Livns 2. Let I be @'closed disc on the Riemann surface S of the field R and @
C be the circumfererics of D. Let v be a 1-chain on D such that | 8y | & C; wri¥e
Y = Xope a(p}p.\bet a and b be distinct points of C not on |y |, and let T be e
positive arc delermined by a and b on C. Let X be a l-chain on D such that 9k =
f— 1, | )\J:r} {av | = 8. Then we have ily, N) = D_,.r a(p).

()
Wﬁffﬂh find an element z of R for which D is an z-disc. Submitting if necessa’y
z §0na homographic transformation, we may assume that z{a) = — (=1

\:c(ﬁ) = (=1)". Let V" be an open z-dise containing D; denote by U the get of
£\points b ¢ V at which %(p) is not real 2 0 and by U the set of points ¢ Vab
which 2(p) is not real £ 0. Then it is easily seen that x™* dz admits 8 primitie
Joon Us (¢ = 1, 2) such that fi(a) = (3/2)r(—1)", fu(bh) = (L/2ye(=1"
50 = ~(/22(=1)"%, £i(6) = (1/2)x(—1)*". We shall sce that T € -
Let ¢ be the point of € at which z takes the value 1. Let o1 be 8 1-simplex o2
¢, sueh. that 8oy = c — 0, oy 8 1-simplex on ¢ N {7, such that do: = b~6

and o3 & 1-simplex on € N Uy such that 8oy = a — b. Then

12

‘[71+ﬂ'2+sr3 3:“1 dz = (—-1)”‘2 (1"/2 + T/Z + 11') = 21’(_1) 1

whence e{a, ¢, %) = land T U,.
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Tt is easily seen that there exists a real number a between 0 and 1 which has
the following property : those points g e Uforwhich | z(q) — a| = | (-1)"" — ]|
form a dise D' and D' N € = T. Then, if ¢ is the cirenmference of I¥, a and b
belong to ¢" and 1 N € is one of the arcs determined by ¢ and b on ’; moreover,.
we have D N ¢7 C Uy . Let N be a 1-simplex on D N'¢ such that ¥ = b — a.
Then we assert that i(y, A) = t{y, \'). Foreach p e | 8y | we can find a 1-simplex
(o) such that a) u(p) lies on V3 b) [ u(p) | 1.0 = {p};0) du(p) = ; — b, where
wisa point of ¥ — D. Then neither | A | nor | M | has any point in common ‘Wwith
any of the sets | u(p) | , whence ify,\) = iy + > elavi @l0) (), 2) and 4(y, \)
= 1.(7 + ZMZM] a(p) p(p), N)- The set . a(‘Y + Evelavl a(p) ”(p))l has no
point in common with 1. The chain A = A is & cycle on D, and therefore homol-
ogous to 0 on D, since Hy(D) = 0. It follows that iy 4 Doseiam a(p) (5N
M = A) = 0, which proves our assertion. We can find a 1-simplex X" on € guch
that A" = a — b, [A7 [N D = {a} U {6}. Then | A" | has no point in cg’;imi’on

with |7 |, and i(y, N) = 3(—(\" + A"), 7). The chain —(\' + A*) is ad-cyele
on(";sinee |\ < Uy, |A”| C Us, we have Joalde= (=D h e dr =
n(—11", whence f_qrnn & de = 2x(—1)", which proves that’— (" + A")
belongs to the positive generator of Hi(C"). The points O£4,07 | which. are in
D' are those which are in T'; Lemma 2 follows thereforg: immediately . from
Lemma 1. \\ ‘ .

Lamma 3. Let D be a closed disc on the Riemanny surface S of the field R and
16t K be a closed arcwise connecled subset of B. Leb ¥ be an open subset of S contain- -
g D, Let n be an integer. Assume that a l-pyéfé ton S — Hhas the property that
it,A) = 0 (mod n) for every l-cycle X ofiS. Then § may be writien in the :_form
w4+ [ + 87, where & is a 1-cycleon S, 2 o 1-cycle on 8 — (DU E), and T
o 2-chain on VU | ¢ |. If ¢ is o 2eyele on 8 — E,and f DNE# g, then ¢ 13
homologous on S to a 2-cycle on 8= (D U E).

Let 2 be an element of Roguch that D is an ”
D. Let IV be a closed z-is¢of z-center c, containing D in its interior and'conta,med;
in V, and let (" be phe cireumference of D'. If do € ¢’ the set of Pom_’ss geD
such tha, 2(q) —talte), ¢ real, 0 < ¢ < 1, will be called the radict sef of o

We shall firsibove the existence of a closed z-disc D", of z-centert, wlth”th'e.
following préperties: D” is in the interior of D’ and D in the interior of D" if
Mﬁ the union of the radial sets of D' which contain points of 't_}.le set

D"~ D" N E (where the bar means the adherence), then hgs no point 1E

tommon with IV — D" N (| ¢ | U | ¢ | ). Assume for a moment that no such
dise D” exists. Let #* be the z-radius of IY'. Then, for each integet M > 0; there-
exist points 5, ¢ I N E and qne D' N (| £]U]01) which both lie on the 8me
ra_c_lllal set of I’ and which are such that | &(pa) | 2 7' ~ " |‘x(qm) = fb o
™, Whence | 2(pw) ~ 2(qa) | < m . Since D' N B js compact, some Su T:
g}lllen?e _Of the sequence (p,) converges to 2 point o € pne. T}{Tn Po 18 & c{;,

¢ limit of & subsequence of the sequence (d), Whence m £ le|Ule!, sin

! t —_—
UL }is compact. But this is impossible since fr1Uiel & § - B

-disc, and let ¢ be the z-center of
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The disc D" having been selected so as to satisfy the prescribed conditions,
it is clear that we can find an integer p = 0 such that every simplex oceurring in
either one of the chains {* = subd® | or ¢* = subd® ¢ and whose set of points
meets D lies on D', Let then v; and ¢4 be the chains formed with those simplices
oceurring in {* and ¢* vespectively and which lie on I, these simplices receiving
in 1 and ¢y the same coefficients which they have in {* and ¢* respectively. Then
¢¥ — yviand ¢* — ¢y are chainson S — (DU E),

If we map an arbitrary point p ¢ D’ — D” — (D' — D” N F) upon the point
of C” which lies on the same radial set as p, we obtain a continuous mapping of
D' — D" — (D" — D" (| F) which is clearly homotopic to the identity mapping
and which coincides with the identity mapping on ¢’ — ¢’ (WF. The cycles
371, &y le on D' — D — (D' — D" N F); they are therefore homologous
on this set to cycles on ¢ — €' 1 F. This means that there exist a 1-chain
v2 and & 2-chain ¥z on ' — " — (¥ — D" N F) suchshat | 8(v. + v2) | ©
[al +¢2) | CC. D

Write 6(y1 + ¥2) = 2kt @ies , Where ¢ , - - - \(8) are points of (" and a;, # 0
(1 £ k = k). The points e, lie on ¢’ — ¢’ N EWe assert that, 4 being any
connected component of ¢' — €' N E, we haye > a6 = 0 (mod n). This is
clear if ¢’ M E either is empty or consists.of a single point, since > i a; = 0.
If ¢' 1N E has at least two points, then the'relative boundary of A on €' consists
of two points a and b of £; we may aggume that these points have been named in
such a way that 4 is the positivesarc determined by a and b. It is clear that we
can find a 1-chain A, on F such that 9\ = b — a. Then we have | v, + 72 | (1] 8\ |
= @i, and | & | N [ (1 + vo)4,= @ and it follows from Lemma 2 that 3 eex 0 =
s + 72, M). Now, | v%,=5 1 — 2 | does not meet F; £{y, + vz, A is therefore
equal to ¢(y*, M) = #(¥, %), Since E is arcwise connected, there exists a 1-chain
A; on B such that 9 = a — b; N + A is a cycle and i(y, A) = i(y, & + M)
(because | v | G &7~ E, whence |y | 1| A¢ | = #). This number is by assumption
= 0 (mod n)..

For each-component 4 of ¢' — ¢’ N E which meets | 8(y; + v2) | , select a
point fA‘eQi ‘and denote by b, the integer n * Z,W, ap (forn = 0;if n = 0, we set
bs = 0)."Then it is clear that n>_4 bafs — 8(y, + v2) bounds a 1-chain v; on
Qf\ “i\:C’ NE ; thus 80y + v + vi) = ﬂzg bats . It follows that Z..!. by = 0
and therefore that 3 4b4f. bounds a chain —v, on ¢, Write F=m+rntrt
ys + % — v — vz — 73 — nya). The chain vy, + s -+ v + 7vs is a L-cycleon
IY; since Hi(D') = {0}, this cycle bounds a 2-chain = on D, whence {* =
dn 4+ (* = 71 — v2 — vs — nvs). Since ¢* is a cycle, the same is true of & —
vt Y2 — ¥s — 7yq . The chains {* — y; — v, — v, lie on § — (D U E); thus we see
that ndys = 8(¢* — v1 — 2 — v;) bounds a 1-chain on § — (D U E). Now, it is
easily seen that, for any space X, Hy(X) never contains any element 0 of finite
order. We conclude that v, bounds a 1-chain ys on § — (D U EB) Weset h =
Vs~ 1,8 = — 4 — v — v — wys. Then §, is a l-cycle, {3 a 1-cycle on
S — (DUE),and wehavey = (¢ — )+ 9n + nfy -+ &2 . Since ¢* = subd® [,
§* is homologous to { on | ¢ |, and we have { — {* = 3 , where 7, is a 2-chain
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“on|¢]. Since | n{ CDCV,wehave |n,+ 7| C|¢|UV; the first asser-
tion of Lemma 3 is thereby proved. _
Assume from now on that D N E = 8. Wehave | 3¢ + ¢n) | ¢ — C'N E.
Ii ¢’ N E is not empty, then ¢/ — €’ N E is a union of mutually disjoint sets each
of which is relatively open in ¢/ — C*f E and is homeomorphic to an open inter-
" val of the real axis. Any 1-cycle on ¢’ — ¢’ E lies on the union of a finite number
of these sets, from which it follows iramediately that Hy(C" - ¢ N B} = {0}
in this case, and therefore that 8y, + ¥») bounds a 2-chain — 3 on ¢ —~-CNE.
The same conclusion is still true if ¢7 (1 E is empty. For, let a be a point of D NE,
whence a ¢ | ¥1 + ¢ | . Since a is interior to I, ¢’ isa deformation retract of
D' — {a}. The chain 8(¢: + ¥s), which lies on ¢’ and which bounds on D' — {a},
therefore bounds on ¢ = ' — ¢ N E. ' \
 Thus, in any case, 3(§x + ¢z) = — & , where ys is a 2-chain on ¢ <6 NE.
We write ¢* = ¢4 + o + %2 + (¢* — Y1 — ¥2 — ¥s). The chain gy~ ¥+ ¥
is a 2-cycle on I, and therefore homologous 0 0 on D, since'HE(D’) = {0}.
On the other hand, wehave | ¢* —~ ¢1 | € § — (D UE), | [ &8— (DUE),
|¢s | © 8 — (DU E). Since ¢* is homologous to ¢ on S,'Wgsiee'that ¢ is homol-
0gous to a 2-cycle on § — (D U F). Lemma 3 is thereby proved.

LeMma 4. Let p be a point of the Riemann surfagég)S of the field E and let §
bea l-cycle on S — {9} which is such that i({, A) E}Obﬂad n) for every 1-cycle A on
8, n being some fived tnieger. Then { 18 homologahs on S — {p} fo a cycle of the
form nfy , {1 being some cycle. If o s o 2-chaipion 8 — {p}, then o is homalogous
folon S. ,

For each q € S select an open disc I, containing g in such a way that the follow-
ing conditions are satisfied: the seb. ', has no point in common with | ¢ | U | o i. ;
if g = p, then p¢ Vs . Let D Be'a closed disc contained in V, and to x'vhxch qis
interior, and let U, be the interior of D, . The space 8 is comp_oaet and is eovered
by the sets U, , q ¢ Sy therefore, S may be covered by a finite number of sets
Uy , say those relatiye'to the points g of some finite subset @ of S. Let @ be the
number of poin An'Q). We shall index these points by means of the integers
from 1 to a. Sinee™ ¢ V, for q # p, we may assume that q = y. Assume that
g1, -+ , g: have aiready been defined, where 7 is some in‘f.eger <a. D, U -
Up,, = A8 then g, wiil be any one of the points of @ distinct fromgr, ~-* 5 9i-
If not, then, since S is connected, the set Dy Yo U D,, has at least one
boundary point ; on S, and g:4: Wil be a point of @ such that : ¢ Us,,, - This
implies that q;4q is different from gz, <= 9i - - ' .

Set B; = D, U --- UD,, ; then each Fi s closed and arcwise connected.
This is true for ¢ = 1, and, if it is true for some § < @, then it is true for? +1
because B,y = E; U Dy, and Dspy hag the point r; in-common with E; (if
B S;if E; = 8, then Ein = 8). Furthermore, Wwe bave B = S. .

The cycles {y = ¢, = ¢ lieon S — En _ Assume that, for some ¢ < @, We nave

already proved that ¢ is homologous on S — [p} toacycle of j:he form néy + 2,

where 6, is g cycle on S and 6 a cycle on S — E,. If A is any cycle on S,
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then £(0z,X) = ¢({,A) — ne(8, ,A) = 0 (mod n). Making use of Lemma, 3, we con-
clude that 6, is homologous on | 4, U v, +1 t0 a cycle of the form ng, + 8,
where 61 is a cycle on S and 6; a cycleon 8 — (Dy,, ,\UE) = § — E.,,. Since
[6: | € 8~ {pn), Vi, ©8 — {1}, we see that ¢ is homologous on § — {p] to
(6 + 8{) + 6z, 65 being & eycle on S ~ E,,, . Since § — E, = @, the first
assertion of Lemma 4 follows immediately from this inductive process.

Similarly, assume that, for some ¢ < g, ¢ is homologous to a 2-eycle ¢, on § —
E;. We know that D, M E, is not empty. Therefore, it follows from Lemma 3
that ¢: is homologous to a 2-cycle ¢y, on § — Dy, VE) = 8 — By Sinee
8 — Ea is empty and ¢ is homologous to a Z-cycleon 8§ — K, »We see that ¢
is homologous to 0. Lemma 4 is now completely proved.

N

O\
§8. THE HOMOLOGY GROUPS OF THE RIEMANN.SURFACE

THEOREM 11. Let P and Q be mutually disjoint finite s;ubjgéfs of the Riemann sur-
face 8 of the field R. Denote by g the genus of R and byrpoarid g the numbers of ele-
ments of P and @ respectively; set p* = max{p b, 0f, ¢* = maxfg — 1,0},
Then Hi(S — P, Q) is a free abelian group on 2g No\p* + q* generators. If ¢ ~— nlec)
8 any homomorphism of this group inlo the tive group of integers, then there
exists a unique element ¢’ ¢« Hi(S — Q, P) &ileh that n(c) = i(c, ¢’) for every ¢ e
Hi(8— P, Q). If c > w(e) is any homomerphism of Hi(S — P, Q) into the additive
group of complex numbers, then therg exists a differential w having no pole in the
set @ and whose residues at all plaggsnot in P are 0 such thai wle) = f,w for all
¢ e Hi(S — P, Q); the differeniidb e is determined by this condition o within an
additive differential of the formtdf, where [ is an element of R which admits the
places of the set Q as 2eros

For every point r }{UtQ, we select a closed disc D, containing t in its interior
but having no othetpoint in common with 7 U . We denote by ¢, the circum-
ference of D, aqd\t;y £(1) a cycle on ¢ which belongs to the positive generator
of Hi(C:). The(set S — Q is easily seen to be connected and therefore arcwise
connected; i §"and p’ are distinet points of P, we denote by +(p, ¥") & I-chain
on S —\%‘(Jch that 8y(p, »") = p* — p. We shall first prove that 2 _n.nsi(p) is
homolegous to 0 on § — P. We may of course assume that P is not empty; let
pbeany point of P. If A is any cycle on S, we have {(¢(p), \) = 0 becausc {(p) is
homologous to 0 on D, and therefore on S. Making use of Lemma 4, §7 (where
we take n = 0), we see that £(p) is homologous to 0 on 8 — {p}. If P = {p},
then it follows from Lemma 4, §4, applied to the sets I/ = S — {p} and P — {p},
that {(p) is homologous on § — P 10 a eycle of the form D preppres a(p’) £(07).
Since {3y, p') is a eycle modulo P, we have

GG — X () ¢, v(p, 1) = 0
BrePpyEp
for every v’ ¢ P — {p}. Now, it follows from Lemma 1, §7 that

W) v(e o) = —1; i), (o, o) = 1;
W), v, ) = 0if p” ¢ P p” = p, ¥,
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Thus we have —1 — a(p’) = Oforall p’ ¢ P — {p}, which proves that > yer £ (9)
js homologous to 0 on 8 — P.

‘Let z be an integer, and let ¢ be an element of H1(S — P,-Q) such that ileg , ¢)
= 0 (mod n) for every ¢’ ¢ Hi(S — @, P). Then we shall prove that ¢ is of the
form ne, ¢ € H, (S — P, Q). Set 8¢y = D we 2{q)q, and take ¢’ to be the homology
class in Hi(8 — @, P) of £(q); then it follows from Lemma 1, §7 that ¢{ce , €) =
—a{q). Thus we have a{a) = nb(q), where b(q) is an integer, whick we select fo
be 0if n = 0. Since Do alg) = 0, we have 3 e b{q) = 0. The space S — P
being arcwise connected, any two points of @ are homologous to each other on
S — P. Since X . b{a) = 0, the chain 3" e B{a)q may be written as a linear
combination with integral coefficients of chains of the form ¢’ — g”, with o’ and\g”
in Q. 1t follows that dco = nde, , where ¢y is an element of Hy(S — P, @). Replac-
ing ¢ by & — ner , We see that we may assume that dey = 0. R \Y;

Let then v be a eycle of the class ¢ . Every 1-¢ycle A on § is homologous on
8 to a cycle on 8§ — @ {Corollary to Lemma 4, §4). It follows ghat i(v, \) = 0
{mod ). Making use of Lemma 4, §7, we see that v is hontalogous on § to a
eyele of the form nys , 72 being a cycle on S which may even be assumed to be on
8§ — P (Corollary to Lemma 4, §4). Let ¢ be the homo@gy class of y2 in H1{S —
P, Q). Then ¢, — ne; belongs o the kernel of the hom6morphism of Hy(S — P, Q)
into Hy(S, @) which corresponds to the identity ’m@ping of the pair (S — P, &}
into (S, Q). Making use of Lemma 4, §4, we scebhat ¢ — 16 = 2 ver e(P)2(0),
where z(p) is the homology class of t(p) in H30S — P, Q). Tf p and p’ are distinet
points of P, let ¢/(p, 1') be the homology* class of y(p, p') in Hi(8 — @, P).
Making use of the formulas above, we see that 3(co — mez , ¢’ (9, 9)) = e(p) —
e(p). This is by assumption =0 { od'n). Thus, all numbers ¢(p) are congruent to
each other modulo n. On the otier hand, we have proved above that > werz(p) =
0. Thus we see that we mayjssume that all numbers e(p) are =0 (mod 7),
which completes the prooital the fact that ¢ is of the form nc, ¢ € (S — P, @)
Taking in particular ny w0, we see that i(c, ¢) = 0 for every ¢ e H{8 — @, P)
implies ¢ = 0. Fropi/this we may conclude that Hy(S — P, Q) hasno element
=0 of finite ord “\For, if uc = 0 where u is an integer #0, then we have, for
¢ e Hi(S — Q3Y, uile, o) = ilue, ¢) = 0, whence i(¢, ¢/) = Oand ¢ = 0.

Let the apaces Gr.q , §» be defined as in §5, and, for ¢ ¢ Hy(S — P, @), let
the clefent 0(c) of Go.z/S» be defined as in Theorem 9, §6.1f ¢/ e Hi(S — & P,
then (c,"¢’) = —@2x(=1)""7 [ 2le). Therefore, it follows immediately from
what we have proved above that the homomorphism. ¢ — 0(c) of Hi(S — P ’ Q_')
into @, »/Fp is an isomorphism. Let M be the subspace of (Eg,p_f & which is
spanned by the elements @(c), ¢ ¢ . (8 — P, Q). We have obser'\fed in §5 th_ﬂt the
function j(w, «') defines in a natural way & non degenerate bilinear function on
(€e.r/Fr) X (Gp.o/Fa); we shall still denote by 7 this bilinear function. Let
0 be an element of E» o/ Fe such that j(@ %) = 0 for every Qe Hwisa
differential belonging to the coset Qy , then we have Jowo ha Oforevery e Hy(S ”4'
P, Q). Since frpywe = 0 for every p e P, we have resywe = 0 by Theoreml 6, §4.
Since wg ¢ Ep, ¢, this means that b is of the second kind. Any homology €iass on
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S may be represented by a cycle on § — P; therefore the integral of wg on any
homology class in H1(8) is 0, and it follows that ws admits a primitive f on §
(Theorem 7, §4). Since f is everywhere meromorphic, it is an element of R by
Theorem 4, §2. Since wq € E», ¢ »J has no pole on the set Q. If g and ¢’ are distinet
points of ¢, let (g, q') be a 1-chain on S — P such that #y(d,9") = o’ — g. Then
we have 0 = [, 4 df = f(¢') ~ f(q) by Lemma 2, §4. Tt follows that the num-
bers f{q), q ¢ Q, are all equal to each other. If Jo 1s their common value, we have
wo = d(f — fo) € Fe , whence 5 = 0. The hilinear function J being non degenerate,
we conclude that I is the wholespace Gq.p/F» . Set m = 2¢ + p* + g*; then it
follows from Theorem 15, VI, §8 that €q.»/§p is of dimension m. Since Dt is of

dimension m, we can find m elements d, y ooy de of Hy(S AP, 0) such that
2d), -+, O(d.) are linearly independent in Cor/Tr. Sijnila-r]y, we can find
m' elements dy, -+, dn of Hi(S — @, P) such that Q(d)), .- - , dy) are

linearly independent in €»,o/q. Since j is non degenerate, the determinant of
the matrix (5(2(d,), 2(d })))1§;_;§," is €0, from which\itfollows that the determi-
nant D of the matrix (i(di , d7))154,15m is an integer 50,

Let ¢ be any element of H1(S — P, Q). Theh fi{d) is a linear combination
Dot fidy) of Q(d), -+, Qd,) with complex coefficients ay , -+ , an . We
have i(d, 43) = —Qn(=1)"")™ 5 0@) 0= @r(~ 1" 501 s s () =
2ot adld: d;). Thus, we obtain a,s;is’teln of m linear equations in ey, «-- ,
o with integral coefficients and right’sides, and we know that the determinant
D of this system is 0. It followgthat o , - - - , a, are themselves rational num-
bers, which may be written With D as their common denominator. Therefore,
for any d ¢ H1(S — P, Q), Difis a linear combination ofdy, - -, d, with integral
coefficients. Knowing that H (S — P, @) has no element #0 of finite order, this
implies (by well oW’ theorems on abelian groups) that Hy(S — P, Q) is a
free abelian group on m generators. We shall assume from now on that dy, --- ,
dm form a baseof (S — P, @), and, similarly, that dy , - -- , di, form a base of
H((S — q, PlfThen we shall see that the number D is equal to +1. For, were
this not th:e}a,se, then D would have a prime divisor », and the system of linear
homoge\{iedus congruences D i ad(d:, di) = 0 (mod ») (1 < j < m) would

haye\@ non trivial solution (a, «++ , @), If d = 3.7, adds , then we would
mha‘vi'e' (since dy , --- , dm form a base of Hi(S —Q, P)) id, ¢’) = 0 (mod n)
\Jor every ¢’ e Hi(S — @, P). But this would imply that d = ne with some ¢ in
H(8 — P, Q), which is impossible since g, , **+ Gmarenot all = 0 (mod n) and
di, -+, dnformabase of H:1(S — P, Q).
Since I = =1, it is well known that, the base {di, - ,dn} of Hi(S — P, @)
being given, the base (d; T d:,.) of Hi(S — @, P) may be selected in such &

way that i(di , d;) = 1if 4 = j and 0 if 1 > j. This being the case, let there be
given a homomorphism 5 of ¥ 1(S — P, Q) into the additive group of integers.
I we set ¢ = 201 n(di)d; , we have n(ds) = i(d; , ¢} (1 £ i < m), whence
n(c) = ile, ¢') for every ¢ « Hi(S — P, §). Conversely, if ¢; is an element
of Hy(8 — @, P) such that 5(c) = i(c, ¢}) for every ¢ ¢ Hi(S — P, @), then
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¢h can be written in the form Y aids , and we have a; = (i, ¢1) = n(dy)

(1 = ¢ = m), whence c=c.

Let x be a homomorphism of H1(§ — P, Q) into the additive group of complex
numbers. If w is any differential of the coset @r(—~D" D7, w(d)0(d),
then we have f5;0 = #(d)(1 £ ¢ = m), whence J,@ = 7(c) foreveryce Hy(S —
P, ). This condition clearly determines w to within an elen%gnt of %q . Theorem
11 is therchy proved. ' "

Let us consider the special case where P and @ are empty. Then Hi(S — P, @)
and H,(S — Q, P) are both identical with H:(8). Thus we see that Hi(8)iza
free abelian group on 2g generators. This means that the Riemann surface of @
field of genus g is of topological genus g. Moreover, if (¥, -+, 2zy) is any base
of H:i(8), then the determinant of the matrix (i(zT , 27)) is 1. This matrix
being skew-symmetric, it follows that there exists an integral matrix & ‘of deter-
minant 1 such that 0O

: 0o I

(where 'L denotes the transposed matrix of L, and I, is\tbe mit inatﬁx of degree
¢). The matrix L allows us to pass from the base (é;i(, -+, 23) of Hi(8) to a
new base (21, *- - , 2Zg), and (1) implies that :

0t Sgd #i+a
LSS 0,5 =5+ 6,
OHi>g i
o N—lif‘i >gi=1—4

'\ s
Thus we have proved X \

THEOREM 12. Let g bé thegenus of the field B. Then the first homology group H 1(6t)
of the Riemann surfapeS of R is a free abelian group on 29 generators, and Uhis
group has a base Jormed by 2g elements 21, " ;%2 whose mutual tniersection
numbers are giyg}% y the formulas (2) above.

Any Sugh"iﬁ&ée is called a canonical base of the group Hi(8).

Let u‘s\nb{v return to the consideration of the groups Hy(S — P, @) and H, I(S -
Q, P). Lot {z, «-- , 22} be  canonical base of F(S). Tn the homology class
z(l = k < 2g), we can find a cycle fzon S — (P U Q) (Corollary to Lezqma, 4,
$4). Denote by w; and s the homology classes of £ in Hy(S - P, Q) and Hy(S —
Q, P) respectively. If p e P, let the cycle ¢(p) be defined a5 in the proof of Theorem
11, and Jet z(p) be the homology class of ¢(p) in Hy(8 — P, Q). We have seen that
D perz(p) = 0. If Q@ 5 8, let qo be a point of @; if q is any pomt 7¢I @, let
¢*(4) be an element of Hy(S — P, ) such that 8¢*(q) = q — ao . Seb

(2) iz, 25) =

o@) = c¥g) — ; ™), v+ 3 s use-
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Then we still have dc(q) = ¢ ~ qo, and furthermore i{c(s), uz) = 0 for 1 =
k= 2g
If P 5 §, let po be any point of P. Then we assert that the 2¢ + p* -+ q* ele-
ments

3) w1 2k=20; zp)forpeP,ps#p; elg)forqeq,qs= g,

form a base of (@~ P, Q). For, if we inter(fhange the roles played by P and @,
then we find in a similar manner m elements u;. (1 < k < ’29), 2(q) (7eQ,q %= q);
ei(p) (0 € P, p = po) of Hi(S — Q, P) such that Hue ,aa(p)) =0 (1 Sk <29

PeP,y s py), der(p) = p — po. Set, for p e P, p == o, \
) =al + 2 iele), a(e); A
qEuazréng N\

o S\
then we still have #(u , ¢'()) = 0 (because i(1; , 2’(q)) = 10,'since 2'(q) may be
represented by a cycle which is homologous to 0 on Syand ac¢'(p) = p — vs.
Furthermore, we have, by Lemma 1, §7, <(c(q), 2(Q)="—1, ilc(q), #'(¢)) = 0
(where q and ¢’ are points of @, distinet from o 2xid from each other). It follows
that ile(q), ¢'(p)) = Oforpe P, p = o, g e, a0 . We arrange the elements
(3) of Hi(S — P, Q) in a sequence (d; , -- - ,o\‘d}) and the elements

@ w(sSk=2); 0, forqeQ@efao; (p)fornel,p =

of Hi(8 — @, P) in a sequence (di S % dn). Then it is easily seen tha:t, for
each index ¢ (1 £ ¢ £ m), there exists only one index 7: for whieh i(d;, dj;) #
0, and that 4(d;, d,) = =£1. Th8 Heterminant of the matrix (i(d:, dissigm
i3 therefore +1, from which{¥e conclude that d, y e, lmoand di, or ,dn
are bases of H,(S — P, QQ"'a}ad Hi(8 — @, P) respectively. These bases are said
to constitute a pair of aSsoeiated canondcal bases for our two groups.

Denote by « any differential of the set g, ». Then the coset @ of « modulo
§» may be written'dn the form

s
SOL ) + T £ + T v, 0

&N\ g€ qréqg

where the oy | 3, , Yq are complex numbers. Similarly, if o' ¢ Gz, then the
cosetﬁ"of ' modulo §o may be written in the form '
3

o = ga;mu;) + E A+ T e

veP.pylpy

where the o , Bs , s are complex numbers. It follows that

. 7 20
e, @) = (0, @) = (1) (z R a,,a,;_g)

fmg-1

+ 2e(—13"" X Bl — 2 (=10 DL veBa-

Pel uzipg qEe@iqrEan

On the other hand, we have
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1 _
2 — 1) e = (@, Wnirg) = — f KK 12k S g,
e T
o~ = —j(0, 00 = [, ©  G+1ShS2),
C Y HE—g
and similarly '
(=1 oy = — f o 12k 29,
LT
or(—ef = [ @ G+1<ks 2.
Ur—g . . N\
Also . A
2\
on(~1)"p, = j@, o@D =~ & O

ey )
&

Q = 2m{—DH*es, @,

20(— 1"y, = 8 9E @) = [

& ()

and similar formulas for g; , ~+. Thus we chtain the fgrgu;la

wor s bl Lok L)
Ho, o) = 21(__1)1.*2 ;( e w - wz A i
ros, of w") TES, .
- Z (-’;'(n‘ ?)Tespw + u!gﬁw (-’;(u) !

neP AP
d o are differentials of the
0 and we obtain

(5)

Let us apply this to the special gase where © an

first kind. Then, clearly, j{« w’)'\é, es, ©f = TOS @ =

N Z2g) be @ canonical base of the first homology group

T .
HEOREM 13. Let {1, 4 o' be differentials of the first

of the Riemann surface of @he field B, and let w o1
kind of B. Then we ha&ge\ﬂ’

£\ : . :
(RN
R = 2% £ 23 4q )

A Ty ) i
These relglﬁfc;hs are called the bilinear equaliiies of Riemann.
To conblude this section, we prove :

TamorEM 14. The fwo-dimensional homelogy group of the Riemans surface of

E is infinite cyclic. : .

Let 9 be any point of the Riemann surface S. Denote b{ 1? 3b01:ﬂ;i$§: SI?E
taining p in its interior and by C the eiroumference of D.De T {%} v bounds &
belonging to the positive generator of H.(C). Since Hi{D) 4— & S onds.
2-chain 8 on D. On the other hand, it follows from Lemma %, Y

ws ) 9).
a 2-chain & on S — ip} (because, cleatly, i(r, A) = 0 for every ;f,’.’ct];:noﬁw ig
The chain o =8 — §is a 2—0}’(}16 on 8. Let m be gn integer :
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homologous to mé modulo § — {p}, and ms is not homologous to 0 modulo
S — {p} by Lemma 4, §4. It follows that the homology class of ¢ in Hy(S) i
of infinite order. Let ¢’ be any 2-cycle on 8, Then & is homologous moduio
8 ~ {p} to a chain of the form %3, where % is an integer (Lemma 4, §4), and
therefore also to ky. This means that #" — ke is homologous on 8 to a 2-eycle on
S — {p}. But it follows from Lemma 4, §7 that every 2-cycle on 8§ — {p}
bounds on S, and therefore that ¢’ 1shomologous to ke on 8. Theorem 14 is
thereby proved.

§9. THE THEOREM OF ABEL

The group of divisors of the field & has beeu defined to be the free aBelian group
generated by the places of R. But the places of R are the same thing as the points
of the Riemann surface S. Thus we see that the notions of. (Aivisor on R and of
0-chain on S are equivalent to each other. The only difference between divisors
and 0-chains is a difference of notation, the group of divigors being written multi-
plieatively, while the group of 0-chains is written aglciiﬁively. We shall neverthe-
less make the convention to represent by the game symbol a 0-chain and the
divisor which is associated with it. o\
~ Since 8 is arewise connected, Hy(S) is inﬁ{iite cyclic, and a O-chain Y i) arb
bounds on § if and only if Skaa = 0. 'Thus we see that the 0-chains which
hound are the divisors of degree 0. | ™

THEOREM 15 (THEOREM oF ABEi).'Let b be a divisor of the field R. Then a
necessary and sufficient condition®for b to be the divisor of an element of I is thot
there should exist ¢ 1-chain ~ % the Riemann surface S of R such that oy = b and
fyn=0for every diﬁerent{algq' of the first kind of R.

The proof will be b@s}&‘c;n the following lemma.

LemMa 1. In os*:t{é?; “fw a differential w of R to be of the form x7'dx, with some
T eR, s necessary and sufficient that the following conditions be satisfied: a)ﬂg’
has no pole ofefder > 1; b) every period of wis an tntegral multiple of 2x(—1)",

We ﬁ}‘ﬁ,ﬁ brove that the conditions are necessary. For the eondition a), this
follows@n’itmediately from Lemma 1, VI, §8. Now, let V be an open disc contain-
ing"no-pole of 27'dz, and let f be a primitive of ™'dz on V. Since 2 has no zero
on'¥, 7'’ is holomorphic on V; we have d(z7%) = —27% du + 2% df = 0.
This shows that ¢ = Cz, where C is a constant. If ¢ is any l-simplex on V, and
do = b — a, then we see that exp ([0 'dz) = 2(b) (x(a))™", If v is a 1-chain
such that every simplex occurring in +y lies on an open dise on which = dz has
1o pole, then we see that exp ([, z™" dz) = T o)™ if oy = b e -
Now, let § be a cycle such that | ¢ | does not contain any pole of £ * dz. Then there
exists an integer p = 0 such that every simplex oceurring in subd’¢ lies on an
open dise on which #™* dx has no pole. Tt follows that exp (J; 70 dx) = 1 and
therefore that [; 2™ dz is an integral multiple of 2x(—1)"", This proves that
condition b) is necessary.
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Now, assume that conditions a} and b) are satisfied. Let P be the set of poles of
« and let by be & fixed point of § — P, For any point ¢ § — P, select a 1-chain
+(p) on 8 — P such that 3(p) = p — bo, and set g(p) = exp (5 w). We shall
see that the function ¢ is holomorphie on S — P. Let pbe a point of S — P, and
T an open dise contained in 8 — P and containing ». Then « admits & primitive
fon V. For each g ¢ ¥V, let o(q) be a 1-simplex on ¥ such that 8s{(q) = g — p.
Then v(q) — (y(p) + o)) is & cydle on § — P, whence fypo = Symw +
() — F) + 2kx (—1)", where k is an integer, and therefore g(a) = g(b)
-exp {(f(q) — f(»)), which proves that g is holomorphic on V.

Now, let a be a point of P, whence »,(w) = ~1. The logarithmic period of @
relative to o being an integral multiple of 2w (- 1)'%, the residue of w at a is an
integer m. Let y be an element of R such that ».(y) = I, »,(y) = 0. Then'we
have v, (y "dy™) = —1, res,(y""dy™) = m, which proves that @ — y *dy"™ has
no pole at a. We may assume thai the chains y(p) which were used.in ‘defining
the function g are such that | y(y) | never contains a zero or a pole of y unless p
is one. There exists a neighbourhood of a in whichy has no zero of.pale except at o
itself; if p is a point not equal to u in this neighbourhoods then (") (p) =
Cexp Jyw (0 — 3y "dy™) where € is & constant. Sideéw — y™"dy" is holo-
morphic at a, we see that g may be extended to a function which is meromorphic
at 0. This being true for every o ¢ P, g may be ext {ded to a meromorphic func-
tion on the whole of S. This function is an element: of R by Theorem 4, §2, and it
is clear that w = g dyg. W\ ' _

We are now in a position to prove the theozem of Abel. Let first b be the divisor
of an element z of R. Then the mapping4 — @r(—1)")™ [, & de is 8 homo- .
morphism of H:(§ — | b | ) into the additive group of integers. By Theorenllmlli
§8, there exists an element ¢ ¢ Hi(3, | | ) such that u(x, ¢ = (@r(—1) _)
Jox™ da for every u e Hi (S = 113 ). Making use of Theorem 9, §6, we associate
to ¢ a coset Q(c) of the space obdifferentials whose residues at all places not oceur-
ring in b are 0 modulothe s]i)a'ce of exact differentials; it is clear from the def-imtlon
of Q(c) that it containg'd™ dz. If p is a place occurring in b, then the residue of
27 dx at p is easily.seén t0 be »,(x), while the residue of Q(c) at pis the coefficient -
with which p octtrd in d¢ (Theorem 9, §6); it follows that dc = b. Let ¢ be a
differential of ¢he first kind; then f,n = j(z™ dz, ). Since &~ dz hasno pole
of order >-iand « has no pole, j(z™* dz, n) = 0 in virtue of Lemma 1, §6.

Conversely, let b be a divisor of R such that there exists a ¢ e H:(8,1b])
such that 3¢ = b and [, n = 0for every differential 5 of the first kind. Let w be a
differential of the class Q(c). For each pole p of o let us select an fy € B such i':hat

vy(w — dfy) = —1 (Theorem 14, VI, §8). If » is any differential of the first kind,
then the definition of the function 7, gives jy(e, n) = TeSufen. Thus we ha.w? 0=
Jom = j(w, 5) = 2, resyfyn, the sum being extended to the poles of w. If fis the
repartition of R which assigns f, to every pole p of and 0 to the other places of
R, then 37, yes,fn = >ty = alf). Thus, it follows from Theorem 2,
I1, §5 that there exists an element f of & such that »,(f — f ,,)_ b 0 for every pole

pof w and »,(f) = 0 for every other place g. Thenw, = @ = df is still a representa-
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tive of the class Q(c) and has no pole of order > 1. If % is an element of H{8 -
| 51), then fow = 2n(—1)"%(c, u) is an integral multiple of 2r(—1)"". By
Lemma 1, it follows that w, is of the form 2™ dz, with some z ¢ B. Since g¢ = b,

the residue of 7' dx at a place p is the exponent with which p oceurs in b;on -

the other hand, this residue is easily seen to be equal to »,(x). This proves that dis
the divisor of . The theorem of Abel is thereby proved.

Let g be the genus of R, and let {m , --- , n,} be a base of the space of dif-
ferentials ofthe first kind of B. If 2 ¢ H:(S), we set Pi(z) = [, : (1 S ¢ < ¢); then
the mapping 2 > (Py(z), -++ , P,{z)) isa homemorphism of H,(S) into the addi-
tive group of the g-dimensional complex Cartesian space C° ; let B be the image
of H:(S) under this mapping. ~

Let a be any divisor of degree 0 in B. Then we can find a 1-chain v such that
8y = a.8et Buly) = [,7: (1 £ 4 < ¢), and denote by A{v)¢the residue class of
the point B(y) = (Bi(y), -+ , B,(y)) e ° modulo B. Theﬁ Af+) depends only
on a. For, if ' is any other 1-chain such that 8y’ = a, themy” — v is a cycle. Since
Biy') — Bily) = [y ns, we see that B(y") — Bly) ¢ B, which proves our
assertion. We shall define 4 (n) to be 4 (v). O

If a; , oz are divisors of degree 0 and v, ,vzchains such that dy, = o1, 9y = @,
then 8(y: + v2) = o0, , whence 4 (a0, %."&fﬁl ) + A{az). This shows that 4
is a homomorphism of the group of diyisors” of degree 0 into the group C*/%.
Let D be the group of principal divisors.(i.xe. of divisors of elements of R). Then
it follows immediately from the thedrem of Abel that A(a) = 0 for all o e D; .
Conversely, let o be a divisor of ;lé?gree 0 such that 4{a) = 0. Let y be a 1-ehain
such that 8y = q; then we have,B(y) ¢ B, and there exists a cycle ¢ on S such
that Bily) = frm. (1 < ¢ Z-q). Tt follows that [,_r 4 = 0 for every differential 4
of the first kind; since a(:m— {) = a, it follows from the theorem of Abel that &
is a prineipal divisor. A\

We see that A4 (a), (ﬁ)ends only on the residue class @ of a modulo D, ; if we
set A(H) = A(a)pA’is an isomorphism of ©/Dy (where D is the group of all
givi%ors of de{rl N ) with a subgroup of ¢*/P. We shail prove that A(®/Dy) =

/B K :

) Denot%by‘ I' the subgroup of € containing P which is such that T/ =
A(D/Dok In order to prove our assertion, it will clearly be sufficient to prove that
r cortains a neighhourhood of the origin in C¥, because this implies that I' = C.
{ Salect g distinet places vy, - - - , 9y of E such that the divisor v, - -- b, is non
special (Lemma 4, VI, §8). Let z; be a uniformizing variable at b; (1 < ¢ = ¢)-
Wemap every differential 4 of the first kind of R upon the point ((/dz:) (01}, - >
{n/dz,) (v,)) € C°. Since vy - - - v, is non special, no differential » s< 0 is mapped

“upon 0, and we obtain an iscmorphism of the space of differentials of the first
kind of B into €%, The space of differentials of the first kind being of dimension
g, our isomorphism is setually onto. Set (ne/dz;) (b;) = he; (1 = 4,5 < g); then
the matrix (h.;} obviously has a determinant =0,

Foreach j (1 £/ < g),let V', be an open z;-dise of z;-center v; , and let fi; be
& primitive of »; on ¥, such that fv;) =0.If p; e V; , weset Glpy, -, Pa) =
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S, fiu(vs) (1 £ ¢ = g) and we denote by €(m, -, pe) the point (Gulp,
T P ¢ TR )X €”. Let also ¢;(p;) be & 1-simplex on V; such
that do;(p;) = p; — b;, and sety(Dy, -~ , o) = > %1 ai{p;). Then we have
5‘7(131, ,pﬂ') = (pl e ‘pﬂ) (bl et bn)_l; aﬂd, since (E"(pl) )Dﬂ') =
Tvtssoongi s €01y <oy P} = BlyQp, oo p,)). Thus our assertion that T
contains a neighbourhood of the origin in ¢° will be proved if we show that €
maps ] [% V; onto a neighbourhood of the origin in €, Now, €i(m, -, %)
may be written in the form (), - » z(hy)), Where &7 is a holomorphie
function of its ¢ arguments on the polycylinder 1151 2;(V ;). Making uee of the
theorem on implicit functions, we see that our assertion will be proved if we show
that the funetional determinant of 6T, -, ¥ is # 0 at the origin. Sinee
{; is a primitive of »;, we have (dfi;/dxs) (o) = (n:/dxs) (0;) = his, whenee

@6F/0x;) (0, -~ ,0) = hy; and we know that the determinant of the, niatrix

(his) 18 = 0. AN
Thus we have proved that the group of classes of divisors of degree 0 of ¥

is isomorphic with €°/B. Now, we shall consider more closely théstructire of the

group B. R
Using the same notation as above, we observe that.the’ determinant of the
me neigh-

matrix ((n;/dz;) (p;)) remains > 0 when (3, **- ,,@;remains on S0 :
bourhood IV of (b , - - » ) in []% Vs . This means that, i (pr, s B €N,
then no linear combination of m, =" % with\gonstant coefficients not all 0
can have , , - , Jo 85 zeros, ie. the divisor™p: - -+ by 15 OB special. Making
use of the Riemann-Roch theorem, we geo that W((py -+~ p) ) = 1, ie. only
the constants are multiples of (P ¢y p,) "}, which proves that (b -+ g
(py - - - p,) " is not a prineipal diviser Whless by -+ B = B o+ Po- Since € maps
N upon a neighbourhood of the ofigin in (”, we See that thereis & neighbqurhOf)d
of the origin in €’ which co, tains 00 point 0 of P. This proves that $1s 4 dis-
erete subgroup of ¥, and i;}herefore g free abelian group on & certain number
m = 2g of generators. T@‘é hall see that m is equal to 2g.

Let {z1 , -+« , 72}, bea base of Ha(S). Then the points Py = (Paleads *
Py(z)) (1 £ k 529) form a set of generators of P, and our sssertion will be

proved if we shc%that 3%, g, P(ey) = 0, Wheredr, - o 5 & are integers, implies
g =0 (1 <th'= 2g). Setz = > 3, o 5 then we have [, 7 = 0 for every dif-
ferential.sf of the first kind. Our assertion will therefore follow from

on the Riemann surface S of the field B.
1 of the first kind n. Thenz = 0.

Denote by © the space of differentials of the second kind of B, _by D 'the
space of differentials of the first kind, and by § the space of exact differentials.
Let 2(z) be the element of D/§ which is associated to z by means of the result of -
Theorem 9, §6, and let w be a differential belonging to the cos_;et 0(z). Then we
have j{w, ). = [: n = 0 for every differential 7 of the first l.(md. On the othex:
hand, we have ©, N § = {0}, since, if 7 ¢ B, every poleof & 1 also & pol‘e of dz;
it follows that (D, + F)/F is of dimension g. We know that the function dg[__ines

&

Lemny 2. Let 2z be a homology class
Assume that [, # = 0 for every differentics
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a non degenerate bilinear functior on (D/F) X (D/F). It follows that the dif-
ferentials ¢ e D such that j(8, 5} = 0 for every » ¢ D, form a subspace O, of D
such that dim (D,/§) = dim (D/F) — dim D, = 27 — ¢ = ¢. But D, clearly
contains D, , whence D, = Dy + §. It follows that the differential « selacted
ahove may be assumed to le in @y . Since w ¢ Q(2), the periods of @ are all
integral multiples of 2xr(—1)"*; since « is of the first kind, it follows from Lemma
1 that w is of the form z'dz, = ¢ R. But then z can have no zero or pole, and
is therefore a constant, whence @ = 0 and z = 0.

Thus we have proved that P is a discrete subgroup of C¥ with 27 independent
generators. This being the case, it is well known that C°/% is isomcgphie with the
2g-dimensional torus group. Thus we have proved

TaEOREM 16. If g is the genus of the field R, then the groz@‘o}' dizisor classes of
degree O of B is isomorphic with the 2g-dimensional torus group.

CoroLLaRY. The notation being as in Theorem 164 #ie ';mmber of divisor classes
of degree O which are of finile order and whose orders. divide a given integer n > 0
N 20 3
wn.

w\,/
§10. Fierps OF'\GENUS ONE

In this section, we shall assume thapour field R is of genus 1.

Let © be the group of divisors of dégree 0 of B and let Dy be the group of
principal divisors, We shall see that the elements of /Dy are in a one-to-one
correspondence with the pointjs]"of the Riemann surface S of R. Let m be any
fixed point of 8;if p ¢ 8, dendte by A(p) the coset of pps " modulo Ty . We shall
see that A(p) # A(q) if p& q. The divisor of a differential of R being of degree
2-1 — 2 = 0, no differential > 0 iz multiple of y, and it follows from the theorem
of Riemann-Roch that 7(p™)) = 1. The only elements of B which are = 0 (mod
p*} are the constants, which proves that, if q = p, then gy~ is not a prineipal
divisor and A{@\S h(p). Moreover, any class of divisors of degree 0 contains an
element of #he form A(p). For, let a be any divisor of the class under considera-
tion. We\@a’ve, since d{a) = 0, l(a-_lpn—l) 2 1; let 2 be an element of E which is
mu]tigle\of &Py . Since the divisor b(x) of  is of degree 0, we have b(z) =
a4 P, where 1 is a place of R, which proves that the class of g is ppp

{ \Denote by 5 a basic element of the space of differentials of the first kind of &,
and by {21, %} a base of Hy(S). Set Seon = a1, [.; 1 = a;. Then we know that
o and oy generate a discrete subgroup P of the additive group ¢ of complex
numbers (cf. §9). Assign to every place p ¢ & a 1-chain v(p) on S such that
&y(p) = p — Po, and let A(n) be the residue class of the number [, » modulo
P (we have seen in §9 that this residue class depends only on p). Then it follows
from what was said just above and from the results of §9 that the mapping
P — A(p) maps S in a one-to-one way onto C/$B. Now, the group /P carries &
natural topology as a factor group of C. We shall see that the mapping p — A
is continuous. Let p be a point of S ; and let V' be an open disc containing p; denote
by f the primitive of 4 on ¥V which is such that f(p) = 0. If g ¢ V, let o{d) be 8
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1-simplex on V such that 8¢(q) = q — p. Then ¥(p) + o{q} differs from v(q) by
a cycle ¢, and we have fi n ¢ B. It follows that A(q) is the sum of A(p) and of
the residue class modulo P of Joq) 7 = F(q), which proves the continuity of A on
V. Since S is compact, it follows that S is homeomorphic with C/%, Le., with a
2-dimensional torus. '

Now, let z be an element of R. Define a function #* on €' by the condition that
2*(w) = z(p(w)) (u € ), where p(u) is the point of S which is mapped by A apon
the residue class of # modulo . We shall prove that z* is a meromorphic funetion.
Let u be any complex number; set p = p(u), and define ¥ and f as above. We
can find & uniformizing variable ¥ at p such that V is a y-dise. If q ¢ V, we may
write f(q) = f*(y(q)), where f*is a holomorphie function on (V). Since p.has
10 zero on S and df = n, We see that the derivative of f*is everywhere # Ooh
We conclude that y(g) may be represented as a holomorphic function of f(q) for
q in a suitable neighbourhood of p. Since Fp{»)) = v — u whenever, :N = ulis
sufficiently small, we see that y{p@)) is a holomorphic function.of v on some
neighbourhood of u. Since z(q) can be represented (for q e V)/@8'a meromorphic
function of ¥(q), i follows that z* s meromorphic at 4. s\

Now, it is clear that z* admits the periods o and 2\ " Therefore, * ifz an
elliptic funetion with these periods (cf. I1, §8). Convexsely, let ¢* be any elliptic
function with the periods oy and e, . Then, if w e&, ‘g*(u) depends only on the
residue class of u modulo . It follows that there'exists a funetion g, defined on

S, such that g(p(w)) = g*(u) for every u e C.\We see easily by the same kind of

argument which was used above that gﬁi’siéveryWhere meromorphic. Therefore,

¢ is an element of R (Theorem 4, §2), ¥hus we have proved

TuroREM 17. If the field R is of Bris 1, there exist two cample:v numbers o and
ay such that R is isomorphic with the field of ellipiic funciions with the periods or
Gnd [+ \\ .

Conversely, let ay and\éx; "l:;e complex numbers whose ratio is not real, and let
R be the field of elliptie’ functions with the periods o and o . Then we know

' - . . = . - les

(II, §8) that B = CXf, f/), where fis an elliptic function admitéing as only po
the points of the§56Up 9 generated by o: and a, and such that wf(w) takes t]:ie:
ilyseen that 7 = f’

value I at « <20, while f* is the derivative of f. Then it is easl
df is & gifferential of the first kind of f. The Riemann surface § of  may be
identifiedwith C/P. If u ¢ C, let v*(1) be a 1-chain on ¢ such that oy (u)‘ =
{u} — {0}, and let v(u) be the image of y*(u) in S under the natural mapp}lln% |
of C onto S. Sincedf = f'du, we see immediately that Jycwy n = . Itfollows tl a;s
the group of periods of 4 is the group generated by o and o, . The d]fferent\la];l
of the first kind of R which are > 0 are of the form en, ¢ € C, ¢ # 0, and t ff:
group of periods of ¢ is generated by co and caz . We -con-.::lude that the ﬁellidt? .
elliptic functions with the periods 81 and Sz is isomorphic with the field of elliptic

functions with the periods a and a if and only if there exists a complex number

' d B, is identical with the group generated
¢ such that the group generated by £ an B2 e, whore

by ea; and ce; . This implies that 8 = clkar + laz)_, B2
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k, 1, m,n are integers such that kn — bn = &=1. We may also say that 1 =ay/ay
and 7 = 85/8: must be related by an equation of the form

, _m~nr
T= kE+1Ir

where &, I, m, n are integers such that kn — Im = =1. This explains the relation-

ship which exists between the theory of elliptic functions and that of modular
functions.

$11. Tug RI1BMANN SURFACE AS AN ANALYTIC MANIFOLD

For the definitign and elementary properties of analytic ragnifolds, werefer the
reader to the author's pogl Theory of Lie groups, I, Chaptérs I and V.

We propose to define on the Riemann surface S of thefield R a structure of
analytic manifpld, Let pbe any point of S and let z bela Bniformizing variable at
. If q1s not a pole of 8, we denate by x:(q) and z:{@).the real and the imaginary
parts of 2(q). Then 2, gng xy are real valued funetions defined on a neighbourhood
of p. Call G.(p) the elass of real valued functions defined on neighbourhoods of p
in § and which depeng analytically on 7,48 2, around p. The class (.(p) does
not depend on the ¢hoice of «. For, let y’}e any uniformizing variable at p, and
let 31 and ys be the real and the imagihary part of . On some neighbourhood
of , y may be €Xpressed in the fo:ﬁi'F(x), where F is a function which is defined
and h(?lomorphjc on a neighbelithood of 0 in the complex plane. It follows
mmmediately that ¥ and 1 avéin (.(p), whence @,(p) < @.(p). We would see in

the same way that C(p) s h a = @®,(»). The class E.(p) will
henceforth be denoted by " e B=0) = o)

Let V be an °Pel x-disc of 2-center p. Then V contains a set Vi which is

mapped topologicgly by the mapping q — (21(q), 22(4)) onto a square of center
origin in the 2:divensiona) rea) Cartesian space. If ¢ ¢ V1 , then = — z(q) Is unk-
formizing a1:; 1 ,::Ef We set a; = 24(q) (1 = 1, 2), then @(g) is the class of funetions
f defined 08 B8ighbourhoods of g and which depend analytically on 2 — o aud
= aé\.a}tountzl q. This last condition is equivalent to the condition that f should
depe.lond'analytleally On 2, and z; around g. It follows that the assignment » — (D)
defings a structure of analytic manifold of dimension 2 on S. e
e shall say that 5, complex valued function f, defined on a neighbourhood of &
pome p e §is onalytic at 4 if its real and imaginary part are analytic at y; and we
_shaﬂ say that f is analytic on an open subset [ of S on which it is defined if it
1s analytic at every boint of U. This rotion must be carefully distinguished from

the notion of holom hic funet: . . hic function
on U is also analyt; TPhic function on U, as defined in §2:a holomorp

1¢, but the converse is not true.
1 iﬁthii‘? c?:ﬁ??ang;ent vector space to § at a point p. In Theory of Lie wﬁsé
space L{p}, a de & differential w, at p to be 5 real valued linear function on of
dl_) o 4 We have shown that, the differentials at p form a vector space &
1Mension 2 over the field of real numbers. If z is & uniformizing variable at b, then

the differentials a4, P of the regl and imaginary parts ; and . of z form a base 9
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the space of differentials at p. We shall generalize this notion by calling differential
at p any complex valued linear function on L(yp). Thus the differentials at p now
form & vector space of dimension 2 over the field of complex numbers, which has
s base consisting of the differentials at p of the functions #, and z: . Iffisa
complex valued function which is analytic at p, then we call differential of fat p -
the differential (dfy), + (—1)™ (dfz)y , where f; and f; are the real and imaginary
parts of f. _ -

Let U be an open subset of S. By a differential form of degree 1 on [/ we mean.
a mapping p — w, which, to every p e U, assigns an element w, of the space of
differentials at p. This notion is distinct from, but related to, the notion of
holomorphic differential which was defined in §2. Let « be a holomorphic
differential on U. Let p be a point of U, and 2 a uniformizing varisble at p, Then
we may write @ = f dz, where fis holomorphic at p. Denote by 1 and EI;g*tl}e real
and imaginary parts of «; then the expression f(p) ((dz)y + (— 1) (i) V repre-
sents an element w, of the space of differentials ab p. This element dees-not depend
on z. For, let, y be any uniformizing variable at p. Then there isa ﬁéighbourhqod
of p on which ¥ may be expressed in the form F(z), where Fus- function which
is defined and heolomorphic on some neighbourhood of\0 5o’ the complex plane.
Let o be the value at 0 of the derivative of F; then ‘3"{\}?3"3 (dy/dz) () g i
1 and , are the real and imaginary partsof ¥, then j(é‘have (dys)s + (=1 (dya)s
= a{(dz), + (=DY* (dwa)y). If @ = g dy, thenge have / = g{dy/dx), whence
55) (s + (—~ 1)) = g(p) al(dm 1+ (— 1) (dm)s) = g0 ((@)s +
(—1)"*(dys),), which proves our assertiony THe mapping P —> @ 15 & d:fferentn}l
form on I/, which we shall denote by thesame symbol « as the given holomorphic
differential. In particular, if / is any Holomorphie function on l?", t.hen.dh may be
considered either as a holomorphic differential on U or as & differential form of
degree 1 on U, \J

In Theory of Lie groups,
two differential formg of Mdegree 1 on an 0p 5 .
tended without diffiglty to the case of complex differential forms. It is note-
worthy that w [ @’ & 0 whenever w and «’ are holomorphic (becs}use, at every
n'e U, we may Qxite wy = al(dz)y @ = o' (@) 5 w-here « and o are comp]tit
numbers, W}Sl]'i}a Tisoa uniformizing Val‘i&b]e" at p; it follows that wy O w, =
ao’ (dx), ) (dx)y = 0). _ )

Denbltt‘:}:?y E.o a) :ﬁffere)ntia.l form of degree 1 on an apen set U, by.n A pm'nt of
U, by 7 a uniformizing variable at ; and by z; and z» the real and 1ma,gma£ry
parts of z. Then there exists a neighbourhood N of p such that we have, for
SN, o Flon(a), 2a(0)) (dade + Folar(0)y 7a(@) (@) , where fiand T2 26 SO
plex valued functions defined on a nei hbourhood c_»f thie origin In th'e F;;s‘ ne.
frand f, are of class Cy at the origin (i.e., admit continuous Parhal denv;a, Weéi 1:::
to order % on a neighbourhood of the origin), then « 18 said to be of ¢ ?slsab;ur-
p; if £, and f; are analytic functions of the real variables 21 and & 00 & 11‘;1151: these
hood of the origin, then w is said to be analytic at p. I is easily seent

definitions do not depend on the choice of the uniformizing. variable & (for,

},\\w;e have defined the exterior produét w O« of
en set U; this notion may be ex-
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if # is replaced by some other uniformizing variable at p, then f; and f. are re-
placed by functions which are linear combinations of f; and f with coefficients
which are themselves analytic functions of 2; and z; on a neighbourhood of the
origin}. If @ is of class Cy (or analytie) at all points p of U, then w is said to be
of class € (or analytic) on U,

In Theory of Lie groups, I, we have defined the differential duw of a real analytic
differential form . The definition may be extended without difficulty to the case
of a complex differential form which is of class Cy . If f is & function of class ¢4
and w a differential form of class C; , then we have d(fw) = df 00 « + f dw. H
w is a differential form of class C, , then duw is of class C; and ddw.= 0. If wisa
holomorphic differential on an open set U, then dw = 0. For, letp be a point of
U and let V be an open dise containing p and contained in, & )Then w admits a
primitive f on V, and we have, on V, dw = ddf = 0. O

A l-simplex ¢ on 8 is said to be differentiable if the-mlapping ¢ — o(l — ¢, &)
of the interval [0, 1] into § may be extended to a {“n}a,pping i — o¥{1} of some
open interval | — «, 1 4+ 8[ (with & > 0, 8 > O)into S which is everywhere of
class C; (i.e., if f is any analytic function at »*{), where —a < # < 1 + 8,
then the function f(¢c*(#)) admits a continnong'dérivative on some neighbourhood
of &). This being the case, the mapping’f“— (df(c*(£))/d)u, of the class of
analytic functions at o*{#;) into the fieldof real numbers is & tangent vector Ly
at o*(%), and this tangent vector depends only on ¢ and # (not on the extension
o%); Ly, is called the tangent veelor to o at the point of parameier t. If w is a
holomorphic differential on an\open set U containing | o | and if w admits a
primitive f on U, then we know thatfw = f(o*(1)) — f(c*(0)) (Lemma 2, §4);
this is equal to [§ ((df(c*@)/dt) dt = fy @eetn(Ly) di. It is therefore natural to
set up the following e@mi’cion: if w isa differential form of class Cy on some open
set containing | ¢ }, then we call éntegral of w on o the number [ w,eq (L) @t

A l-chain v_on 8 is said to be differentiable if every simplex occurring in ¥
is differentiablé;\ Let then v = ) i oy , where o , <+« , o are the simplices
oceurring :i:{ &, and let w be a differential form which is defined and of class €
on somg.0pen set containing | v | . Then we define the integral of w on y to be the
numbezf- 7@ = Dty @ fo w It s easily seen that, if v is a differentiable chain,
then so is subd v, and that fyupay 0 = [, . '

Now, we shall prove that S is orientable as an analytic manifold {cf. Theory
of Lie groups, I), and we shall fix a definite orientation of S. Denote by Dy the
space of complex differentials at a point p of S; generalizing what we did for the
case of real differentials, we introduce the Grassman algebra &, over the space
Dy . This is an algebra, over the field of complex numbers, and the homogeneous
elements of ®, of degree 2 are the skew-symmetric complex valued bilinear
functions on the tangent space L(p). They form a vector space D of dimension 1
over the field of complex numbers, and to every pair (w,w’) of elements of Dy
there corresponds an element w [J o' of D?, their exterior product. Those ele-
ments of D; which are real valued bilinear functions on L(p) will be called real;
they are the homogeneous elements of degree 2 of the Girassman slgehra over the
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space of real differentials. Now, let & be a uniformizing variable at p, and let
x; and x; be the real and imaginary parts of x. Then we know that (dz), and
{dz:}, form a base of D, , and that (de,), O (dao), is a basic element of the space
of real elements of Dj . Let & be the imaginary conjugate function of z. Since
(dz)y = (dz)s + (—1)"*(dzs), and (d2), = (dar)y — (— 1) (das)y, (o), and (d2),
form a base of ©,, and we have (dz), O (dE), = —2(—1)"*dxy), O (dzs), .
This shows that (—1)"*(dz), O (di), is a real basic element of ©F . Now, let y
be any other uniformizing variable at ». Then we have (dy), = «(dz), , where
a is the value of dy/dx at p, whence (—1)"(dy), O i), = ea((—1)"*(dz), O
(d&),), and the coefficient w& is > 0. This shows that we may define a real element.
¢ of T} to be positive if ¢ = B(—1)"*(dx), O (dZ), with 8 > 0: this deﬁu{tion
does not depend on the choice of the uniformizing varisble =,

Since  — z(q) is uniformizing at every point g of some neighbourhogd of ¥,
we see immediately that the differential form of degree 2, (—1)"*(d23 7" (dz), is
positive at all points of some neighbourhood of p. This form be;iﬁg obviously
continuous, we see that our definition of positivity for real Qlen,ﬁents of D3 yields
an orientation of S. AN\

Having oriented the manifold S, we may integrate di\§ any continuous real
differential form of degree 2. This definition can be.¢xtended without any diffi-
culty to the ease of continuous complex valued ,diﬁerential forms of degree 2.

Now, let ¢ be a differential form of degree 2:which is defined and continuous
only on some open subset U7 of S. We wish to define the integral (when it exists)
of ¢ on U. To do this, introduce the class F*of continuous functions f on § which
have the following properties: &) we hawe¥ f(p) | = 1for all p ¢ §; b) there exists
a compact subset K of U (depending en f) such that f(») = 0 for all p¢ K. If
[ ¢ F, then fio may be extended €0\a continuous differential form (also denoted
by fe) on S, which is eve &xé 0 outside U, and the integral [; fio is defined.
If K is any compact subsehof U, we denote by Fx the set of functions f e ¥ which
are equal to 1 on K. Then'\Fx is never empty (Theory of Lie groups, 1, Lemma 1,
Chapter V, §VII). Moreover, if K and K’ are compact subsets of U, then so is
K U K, and Feyzil= Fx N Fx: . Following the terminology of N. Bourbaii
(Eléments de Mathématique, Livre I1I, Topologie Générale, Chapitre 1), this implies
that the sets.#% form a base of a filter ® on the set F. We shall say that ¢ is
integrable on¥ if the mapping f — [s fie of F into the space of complex numbers
tends o @ limit 7 relatively to the filter ®; I is then called the iniegral of ¢ on u
and is denoted by fye. It is clear that, if U = S, then any continuous differential
form ¢ of degree 2 on & is integrable in the sense of this definition, and that its -
integral is the already defined Jse.

Tn order for ¢ to be integrable on U, it is sufficient that the numbers Js fo for
all f ¢ F form a bounded set. For, assume that this condition is satisfied. Si.nce
(' is complete, in order to prove the existence of the limit I, it will be suffictent
to prove that, for any € > 0, there exists a eompact subset Ke of U such that
| Jsfo — Jsf'o| < € whenever f and f belong to Fix. Assume for & moment that
no such set exists. Then to every compact subset K of U we can gssociate a
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function gx ¢ F which is 0 in K and such that | fsgse | Z £/2 (we take gx =
(1/2) (f — f'), where f and f' are elements of Fx such that | [s 7o — [y /' | > &)
We define inductively a sequence (Ka) of compact subsets of {7 as follows:
K, is the empty set; K, , - -+ , K, being defined, K, ., is a compact subset of I7
outside which g, , -+ - , gx, are all equal to 0. Let ¢, be a number of sbsolute
value 1 such that fs {.gx, ¢ is real and > 0 (and therefore > ¢/2). Then it is
clear that A, = tige, + -+ + $affx, 8 F and that [5 hue > en/2, in contradic-
tion with the assumption that |fs fe | is bounded for all f « 7.

If ¢ can be extended to a differential form ¢, which is defined and continuous
on some open set U; containing the adherence U7 of U, then ¢ is in’seg\rah_le on U,
For we can find 2 continuous function % on & which is equal to Len U/ and to
0 outside Uy ; then hp ean be extended to a continous differenfisl form ¢» on 8,
and gs coineides with ¢ on 7. : "\

¢ W

§12, THE BILINEAR INEQUALITIES OF RIBMANN

Let P = [p, -+, ps} be a finite subset of the R;iégnénn surface S of the field
R, and let o be a differential form of degree 1 which is defined and of class ¢ on
the set § — P; then dw is a continuous djﬂ’erthial form of degree 2 on § — P.

Foreach¢ (1 £ ¢ £ ), let ; be a unif mizing variable at p; and let D; he
a closed z;-disc of z~center p; ; assume fiffthermore that D:ND;=@if1 # J
Denote by r; the #;-radius of D; and by €,its circumference. If §is a real number,
denote by q:(6) the point of C; suchtthat 2:(q:(6)) = r, exp (2r(—1)"%6). Then
the mapping (1 — 4, 8) — 4.(8){where § varies from 0 to 1) is a differentiable
1-simplex -y; on C; . It is easily. geen that v, is a eyele and belongs to the positive
generator of H,(C). Denoteby U the open set 8 — Uk, D, ; then we wish to
prove the formula o\

(1) Q"\'\‘"tfvdw+2’;ﬂfww=o

(which is & special case of the general Stokes formuls). _

Let U be thieadherence of U, If q ¢ U, we select a uniformizing variable %,
at ¢ and aclosed neighbourhood N (q) of g in U/ which is mapped topologically by
Yo up OR’“\‘GIO%d square of center origin in the plane. If q ¢ U — U, then q belongs
to omeiand only one of the sets C'; . In that case, there is a neighbourhood of @
ou(Which z.'dz, admits a primitive y, , which we normalize by the condition that
Yola) = 0. It is easily seen that q has a closed neighbourhood N'(g) on which
¥s is defined and which is mapped topologically by #, onto a closed square of

~ center origin in the plane. We may furthermore assume that N (q) does not meet

any of the sets D, for RS
Let N’(g) be a closed neighbourhood of q contained in the interior of N{(@)-
The compact set U is covered by the sets N’(q) for all g ¢ T; it is therefore also
covered by a finite number of these sets, say hy those for which q ¢ Q, where @
is a finite subset of 7. .
I is well known that we ean assign to every q € Q a function f, of class Ci
on § which is everywhere ¢ outside N(q) in such a way that D .ofi(x) = 1for
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every T ¢ U. Since w coincides on U with > ea Jaw, we see that it is sufficient
to prove formula (1) under the assumption that » is everywhere 0 outside some
set N{q).

Assume first that w is everywhere 0 outside a set N(q) corresponding to a point
q e U. Then we have [,; @ = 0 (1 i £ k), and we have to prove that fy dw = 0.
Let, 1 and y» be the real and imaginary parts of ¥, . If t ¢ N(q), we may write

(2) we = A1 (1), ya(1))Ey): + A2fulx), ya()Hdy):
where A, and A, are continuously differentiable functions on the set 3 (¥(q))
of the plane. We have ~

(3) d&dt = -g——‘;f (yl(f), y:(r)) - g;A: (!'h(r), yz(r))) (d!h): ]| (dyl)ﬂ .'\?\

Since dw, is 0 outside N(q) and dy: I dys is a positive differential form of degree
2 on N(q), we have K¢ \
04y A4
= dsiak GRSl IF T S TORND
j;r de -,;.wun (ay; ) f \
Let 2a he the side of the square 3,(N(q)). Then 4D

aAz _ +0( ﬂa;djd )d "s:x
‘Lq[N(q)} -GE dy Ay = .[u -L. dyt 0 y",‘
=£ (Asla, y) — As(—a, 1)) dya = O
e

because Ay and As vanish on the boundary of y(N {q)), as follows from the
fact that « vanishes outside N In the same Way we would prove that
Feqorian (8A/8ys) dyy dipe = O\v&bence Jo dwo = 0.

Consider now the case where q ¢ C; for some . Thgn we have to prove that
Jedw + [,; @ = 0. Let y{dnd g, be the real and magmflrypm:taofy..Then,lf
¥« N(a), (dy): and (@) form a base of the space of differentials at t, because
dy, = z7'dw:, At easily seen that dyn O dys is poaitive at every point of
N(g.IfteN (:%é still express w: and dew: by the formulas §2) ?nd (3) above.
On the other hand, we have x(r) = z(q) exp (y(1)) from which it follows that
U0 N(gis the set, of points T of N{q) at which (1) > 0. We assert that

’ o f 00 (34, oA
@ [ioo = [ ([ (- 50) ) o
where 2a is the side of the square y(N'(g)). Set B = 3As/ys — 8dy/ 8. Let f
be any continuous function on S which is 0 outside a compact subset K -of U.
Then it is clear that fof dw = Jy,wan /*1) yo)Bdyidys where f'(yll,n pa) B.the
value taken by f at the point r of ¥ (q) at which y(.t) = @ + (—1)"ys . Since
f is everywhere 0 outside U, we have f*(4 , y1) = 0if yu £ 0, whence

-’::fd"’ . Lﬂ (fnaj*(yls yp) Bdy } dis.

N\
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Let & be a positive number. If f(1) = 1 at every point t e N(q) at which n(r) 2 e,

snd | f(r) | £ 1forall v e S, then
+a 4 .
_S,j; (j; [B;dy;)dyz

L[ (oo

and this quantity tends to 0 with £, which proves formula (4). We have

[:’" (j: %A: dyx) dys = —[:ﬂ A0, y2) dys

because As{a, 1) = 0 as follows from the fact that vanishes out\side N{q}. We
shall prove that the right side of this formula is equal to —J5 .

The point ¢:(8) being defined as above, we observe that{ 8 being any real num-
ber, and (¥(q:(1)) the class of analytic functions at a#hon S, the mapping g —
(dg(9:(8))/d0)s-. ina tangent veetor L, to S at 9.(¢);, if0 = ¢ £ 1, then L, is the
tangent vector to v; at the point of parameter. fwhence [, w = Jo* wyi (L) dt.
On the other hand, we have L,y = L,, whenedalso [ @ = J&* vy, (L) di for
any real number b. Let &, be a real numbey’ sich that q:(6) = g. We know that
we have, for r ¢ N(g), 2:(t) = z.(q) expya(1)). It follows that, if q:(t) ¢ N(q),
then ¢ — (1/2m)ys(0:(1)) — t# is an ittéger. We see easily that a < = and that
6 e N(g)for |t — & | £ a/2r. Thus we have

trh (BN tobas2r
f W = f ‘:.&’q‘-(!) (Ll) dt = f wq.—(l) (Ll) d'f
¥i foz1/2 fr—a/2r

because « vanishes outside’ N (q). On the other hand, we have (dyo)yo(L) =
(ya(a:(6))/dB)e- =S2u(=1)", because y,(0:(6)) = 2x(—~1)"(6 — to) if | 8 ~
fo| = a/2%. Thus gy (L) = 2741(0, w(a:{t)), whenee [,; @ = [27 4:(0, y2)dtn.
On the other hdAd; we have

""“,w:"a‘Al ) ' “f [ a4,
_‘£§6j:‘aa din dyz_—j; (-L. a‘gdyz) di1

O = j; Ay, @) — Ay, — @) dy =0

\)ecause « vanishes outside N(q). Formula (1) is now completely proved. We shall *
make use of this formula in the proof of

THEOREM 18 (BILINEAR INEQUALITIES OF RizMann). Let @ be @ differenticl
of the first kind 0 of the field R, and let lz, -+ , 23} be a canonieal base of the

ﬁrs{-dﬁmsimal homology group of the Riemann surface of R. Denote by ™ the
period of w relative to 2, (1 s & < 2g). Then we have

2z(—1)"™ k):)l (Thpe e — T4 Frpy) > O

Making use of Theorem 11, §8, we sce that there exists a differential o of the



THE BILINEAR INEQUALITIES OF RIEMANN 185

second kind of K such that foun = 7 (1 £ k = 2¢). Li follows from formuta (3),
§8 that : ; o
S (i — mee) = @)
2a(—1)V2 01 ko e — W Thpal = JU O .
Let 9, - - , s be the distinct poles of . For each ¢ 1 <iZh lebtribea
uniformizing variable at p; . Denote by D; a closed z:-dise of z;-center D and
zoradius r; ; assume that D; [V D; = @for i # J. Let C; be the cireumference of
D; and ¢; the positive generator of H:(C;). For each ¢« we can find an element
fie R such that 7 — df; has no pole at p; (Theorem 14, V1, §8). We may further- .
more assume that 7; is so small that p; 18 the only pole of f;in D; . Then we, have

N
€ N\

o ) = Tk reny fow = Sea (=1 [ e, D

Now, we introduce the imaginary conjugate @ of the form w; &% defined by the
formula @,(L} = wp(L) Whenever 9 e S and L is a tangentvector to S at p. If
@ = u dz, where z is a non constant element of B and u.¢ B, then ib is easily seen
that &, = ulp) (@), provided b is not a zero or 4 que of de., It fol-lov_vs: that
@, is everywhere analytic on 8. If V is any open c&s;:\on S and M a primitive of
@ on V, then we have (dh), = &, for every D ¢ o S

We shall prove that the differential form, > &, which is analytic on U =
S— ip,--- ), is the differential of al‘analytic function on U. Let { be
any differentiable 1-cycle on U. Then g —a) =Jin - J;&; the second term
is obviously the imaginary conjugatéef Jyw. If§ belongs to the homology class
>2ls awzp on S, then e S%. a Lo o= St L},_w,whence IR (q — &) =
0 sinee ., n = 7: . This being\shid, let b be a0y fixed point of U. Since U is
connected, it is easily seen j;]}a foreachpe U, there exists a differentiable cl}am
¥(p) such that dy(p) =p*r p . In view of what we have proved a few lines
above, the number @)= S~ (0 — &) depends only on p, not ol the choice of
v(p). We shall seg.,’ghhi’s the function ¢ defined in this way is_analytlc on U an_d
that dp = 7 —oaLet V be an open disc contained in U. Since 7 and @ admit
primitives on) T>, there exists an apalytic function ¢v on ¥ su(':h that {iwv =
7 — & on(¥. “Let v and q be points of V, ond let = be a differentiable 1-simplex
on V uch that 37 = q — 9. Then it follows immediately from the fact that
f.& is the imaginary conjugate of J. e that folg —a) = ev(n) — er(d): 01_1 the
other hand, 7 + v(p) — (@) is & differentiable cycle, whence - o) =
Ty (9 — @) = Jatn (0 — @) = o(g) — o{p). Thuswesee that ¢ — ¢v 18 eonstant
on V, which proves that ¢ is analytic on V and that dp = 19— &

Now we write

i, @) = @e(—1'")7 ; y fiw .
- @r(—1 Zl [ et (an (-1 I [, e
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where v is defined as in the proof of formuls (1). Denote by U’ the complement
of the set U, D; . Then we have, by formula (1), 2% f,; 00 = — Jur dlpw),
Sincedw = 0,0 O n =0, wehavedpw) =dp Dw=(n ~ &) Do = —a 0 o,
whence (2r(—1)")7 30 fyie0 = @r(—D"™7' 1,6 O w.

Consider now the quantity [, (f: — ). Let V' be an open 2,-disc of z-center
p: which contains D; but which does not contain any pole of f; other than
pi or any of the points p; for j # <. Then 4 — df; is holomorphic on V'’ and has
therefore a primitive g; on this set. Let also A; be s primitive of w on V5. Then
dhi —dgi =dfi — 4+ 79— (9 — &) = dfi — dy. This means that f; — ¢
differs only by a constant from i; — g; on V; — {p:}, from which it follows
that | f: — ¢ | remains bounded on V; — {p.}. Let z;, and ;s bathe real and .
imaginary patts of z, ; then we can write, for q € V' » 0 # PR — 2wy =
Aia{wiaa), {a)(dxin)y + Ay 2(#:,240), 5.2(0)) (d2:.2)0 ' wlxéfe Aiy1and A;, are
bounded analytic functions on z(V; — {p:}). Thus we have

ty +50)
f; (fi = Qu = ?‘e_,; {—A;a(r; cos 8, r; sin 8) simp

A Aia(rs cos 0, 7, sin 6) cos 9) df

which proves that [,, (f: ~ ¢)w tends t.QQ\when r; tends to 0.

Let £ be a number >0 and <1. Denote by D, the closed disc of 2:-center
p: and 2;-radius 7, and by U, the ebmplement of the set Uil Ds. . Then we
have Ny

. ~ 1 1 -

J(ﬂ:ﬂw\) 4 E]-E% U: mew D &,
Now, let p be any poifit'of U and let z be 8 uniformizing variable at . If o =
u dz, u ¢ B, we hatd @r(—1)") %5, O o, = 2r(~ DY [ ulp) | ¥ (d8), O
{dz)y = @x)~" balp) [ H{~1)"(dz), O (d%),. Thus we see that 2r(—1)"H"
@ O w is positive-at p provided u{p) # 0, i.e. provided p is not a zero of w. Since
@ has onlyd(finite number of zeros, we see that (2r(—1)"%)7" |, v, @ O wis a pos-

tive real Dummber, and that this number increases when ¢ decreases. We conclude
that' j\(nj‘w) Is a positive real number. Theorem 18 is thereby proved.

3

{CoRoLLARY 1. The notation being as in Theorem 18, the numbers m , - = + %o
cannot all be 0,

CoRrOLLARY 2. The notation being as in Theorem 18, let furthermore ay, - - s %o
be any g complex numbers. Then there exists o uniquely determined di ferential
w of the first kind such that f,, 0 = a; (1 £ k < 7).

Let {n, -+, m,} be a base of the space of differentials of the first kind of &;
seb foom = 7l £ 4,1 < g). Then it follows from Corollary 1 that the system
of equations Z‘i’nl i = 0 (1 £ % £ ¢) has no non trivial solution. Therefore,
the system of equations D Ty = a 1gks g) has a unique solution,
which proves Corollary 2,
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